Prof. Krug

Prof. Dr. Kristine Krug

Fakultät für Naturwissenschaften (FNW)
Institut für Biologie (IBIO)
Leipziger Str. 44, Haus 91, 39120 Magdeburg, H91/232
Projekte

Aktuelle Projekte

Leibniz Collaborative Excellence - Chemogenetic dissection of primate brain circuits underlying adaptive cognition (PRIMADIS)
Laufzeit: 01.07.2024 bis 30.06.2027

Zum besseren Verständnis des Gehirns, ist es wichtig zu wissen, welche seiner Netzwerke bestimmte kognitive Funktionen unterstützen. Das kooperative Vorhaben untersucht, wie eine sehr heterogene Gehirngegend (Pulvinar) in unterschiedliche (thalamo-kortikale) Netzwerke des Gehirns eingebunden ist. Durch diese Einbindung werden kognitive Funktionen unterstützt, die es möglich machen, flexibel auf Umweltreize zu reagieren und Sinneseindrücke zum Lernen, Erinnern und für Entscheidungen zu nutzen. In diesem Projekt werden in Primaten mehrere Gehirngegenden in der Pulvinar-Region zielgenau inaktiviert und dadurch die kognitive Funktion dieser Netzwerke des Gehirns aufgeklärt.

Projekt im Forschungsportal ansehen

The pulvinar nuclei as a computational system: Computing and calibrating the organization of 3-D visual space
Laufzeit: 10.10.2023 bis 30.09.2026

Project in DFG Priority Program SPP2411
We present a novel hypothesis of the functions of the pulvinar in the primate and make proposals for specific tests to probe predictions of this hypothesis. The pulvinar nuclei are greatly enlarged in primates compared with other mammals. We advance the view that the pulvinar may function as a computational system that is specifically suited to adaptive computation. As a specific case of this general hypothesis, we will examine how the pulvinar and its connected neocortical areas may support the structuring of 3-D spatial relationships in the visual world. Information about the 3-D structure of the immediately visible world is important for both sensory, perceptual judgments about the size, shape and position or objects, but also for motor activity, particular the control of eye movements. In humans, such movements are inherently binocular in nature and therefore embedded in 3-D spatial processing. Few, if any, studies of the pulvinar nuclei have examined binocular 3-D properties of pulvinar neurons. By contrast, there has been extensive study of the binocular function of sensory cortical areas. We seek to build upon the current canonical view that the pulvinar nuclei provide a relay or ‘efference copy’ of cognitive signals such as spatial attention. This project will test the hypothesis that the pulvinar relay applies a transform to neuronal signals about 3-D spatial relationships as they pass from one visual cortical area to another. We will make dual electrophysiological recordings from the pulvinar nuclei and anatomically connected visual cortical areas The project will test the adaptive, regulatory role of the pulvinar by employing standard visuomotor adaptation paradigms, in combination with interventions that aim to temporarily and reversibly disrupt pulvinar function.

Projekt im Forschungsportal ansehen

Neuromodulation bei Kindern und Jugendlichen bei ADHS: wie können wir relevante Gehirnregionen am besten stimulieren?
Laufzeit: 01.06.2023 bis 01.05.2025

Dieses Projekt wird durchgeführt als Teil des Deutschen Zentrums für Psychische Gesundheit (DZPG).
Im Kindesalter sind Entwicklungsstörungen wie die Aufmerksamkeitsdefizit-/ Hyperaktivitätsstörung (ADHS) häufig Anlass für Familien Hilfe zu suchen. Die Stärken von Kindern, Jugendlichen aber auch Erwachsenen mit Entwicklungsstörungen werden oft nicht richtig wahrgenommen und gefördert, so dass Selbstwert- und Stimmungsprobleme zu den Schwierigkeiten in Schule und Beruf dazukommen können. Viele Studien haben gezeigt, dass bei Entwicklungsstörungen bestimmte Gehirnbereiche nicht ausreichend aktiv sind oder nicht gut zusammenarbeiten. Im Rahmen des neu gegründeten Deutschen Zentrums für Psychische Gesundheit (DZPG), zu dem Halle-Jena-Magdeburg als einer von 6 Standorten gehört, untersuchen wir in verschiedenen Projekten, wie wir Neuromodulation einsetzen können um Betroffene zu unterstützen. Unter Neuromodulation versteht man verschiedene Methoden, mit denen man die Gehirnaktivität von außen (z.B. über ein Stimulationsgerät) oder durch Training (Neurofeedback) beeinflussen kann. Im ersten Teilprojektkonzentrieren wir uns auf einen Teil des rechten Frontallappens im Gehirn, der für die Kontrolle von Ablenkung und Verhalten, aber auch die Verarbeitung von sozialen Informationen wichtig ist. Wir nutzen bereits vorhandene Bildgebungsdaten von Kindern und Jugendlichen um besser zu verstehen, welche Teile dieser Struktur in welche Netzwerke im Gehirn eingebunden sind. In einem weiteren Schritt werden wir untersuchen, ob sich auch bei nicht-menschlichen Primaten diese Netzwerke finden lassen. So können wir Aufgaben und Stimulationseinstellungen erproben, die zu einer langfristigen Verbesserung der Aktivität in diesen Teilen des Gehirns führen.

Projekt im Forschungsportal ansehen

COGSTIM: Online Computational Modulation of Visual Perception.
Laufzeit: 01.02.2023 bis 31.01.2025

HORIZON TMA MSCA Postdoctoral Fellowship - European Fellowship for Dr. Corentin Gaillard:
Computational models of vision often address problems that have a single and definite end-point, such as visual recognition: an example of this might be to find a ripe banana in a complex scene. However, not all computation is of this form. Visual information is processed continuously in sensory areas and the nervous system has the capacity to alter or halt an ongoing behavioural response to changes in incoming information. We can therefore react flexibly to updated sensory input or changed requirements for motor output. On the other hand, these same neuronal mechanisms must also support perceptual stability, so that noisy signals do not cause loss of a crucial goal. In project COGSTIM, I will investigate the functional neuronal networks that support the balance between perceptual flexibility and stability, within primate visual areas. I will use a highly innovative approach, combining dense electrophysiological recording with online (real-time) decoding of neuronal correlates of the subject’s perceptual choice, based on adaptive machine-learning algorithms. In order to control visual perception effectively and predictably, closed-loop electrical stimulation will be applied under dynamically adjusted feedback to identified neuronal circuits that causally modulate associated percepts. Crucially, this novel approach using joint decoding and stimulation in real time will allow me to target dynamically visual percepts, representing a significant advance in our understanding of on-going, continuous computations of the primate brain. Such developments offer promising bases for the future development of rehabilitative therapeutical protocols, as well as innovative brain machine interfaces suitable for real-world use.

Projekt im Forschungsportal ansehen

SFB 1436 - Project C05 "Intervening in circuits for cognitive resource allocation in primates"
Laufzeit: 01.01.2021 bis 31.12.2024

Der SFB 1436 hat das Ziel, neuronale Ressourcen auf allen Größenskalen zu untersuchen durch einen interdisziplinären Ansatz, welcher funktionelle und strukturelle Eigenschaften von kortikalen und subkortikalen Schaltkreisen mit Verhalten und Leistungsfähigkeit in Zusammenhang bringt und Interventionen untersucht. Technologische Fortschritte im Bereich der in vivo Gehirnbildgebung des menschlichen Gehirns sowie der multimodalen Modellierung sollen eine Brücke zwischen Molekularen Studien an Tiermodellen und Verhaltensstudien an Versuchspersonen und Patienten bauen.

Projekt C05 des SFB 1436 - in Kollaboration mit Prof. Dr. Petra Ritter (Charite, Berlin) - verfolgt einen kombinierten theoretischen und empirischen Ansatz, um kausal - von den Neuronen bis zum Verhalten - zu untersuchen, wie die Ressourcenzuteilung in visuellen und parietalen Hirnregionen durch die Veränderung der funktionalen Verbindungen in dem der menschlichen Kognition am nächsten kommenden Tiermodell, dem Rhesusaffen, gesteuert werden kann.

Projekt im Forschungsportal ansehen

Abgeschlossene Projekte

State-dependent decoding and control of neuronal circuits and signals for perceptual decisions
Laufzeit: 01.08.2022 bis 31.07.2024

Summary for the extension of the Heisenberg-Professorship.
Everyday life presents perceptual tasks every moment of the waking day. Walking up and down in a built environment, we may have to find the building we have an appointment in, while we navigate static objects and moving people in our path, meanwhile our gaze might be drawn to faces we recognize. In the past decades, we have made significant strides in understanding the neural substrates that support perceptual judgements about three-dimensional figures and objects and their movement trajectories (Gold & Shadlen 2007; Krug 2020). Most of the underlying evidence has been generated using judgments that take place over clearly-defined finite time periods requiring a response to one perceptual dimension of a simple object or stimulus. The level of inquiry focussed on the single neuron (neurophysiology) and single brain area (functional MRI) (Krug, 2020; Parker & Newsome, 1998).
Building on my previous work, I have developed a new set of 3D-motion stimuli, that allows us to probe how neural signals contribute to perceptual decisions as the incoming stimulus is changing dynamically and unpredictably. In Project 1, we are using these stimuli to probe in real-time the interactions between multiple groups of neurons recorded simultaneously. This project uses high-dimensional recordings with linear electrode arrays as trained Rhesus macaques make perceptual decisions about them. To decode the current state of perceptual circuits from ongoing recorded neuronal activity (SUA, MUA, LFP), I have implemented, together with my postdoc Dr. Corentin Gaillard, modern machine-learning approaches for analysing perceptual decision signals for 3D-motion. We will also use the linear decoder to target causal interventions in ongoing decision-making in a state-dependent manner (Project 2).
The correlative study of real-time signals in Projects 1 informs Project 2. Across Projects 1 & 2, using our detailed knowledge of single neurons and the dynamics of local circuits in area V5/MT for decisions about 3D-motion stimuli (DeAngelis et al.,1998; Dodd et al. 2001 Krug et al., 2004; Krug et al. 2013; Wasmuht et al 2019; Krug 2020), we aim to achieve detailed knowledge of the relevant circuits in extrastriate area V5/MT across columns and their interactions with cortical areas directly connected (V4/V4t, MST, LIP). Project 3 addresses functional decision-making in primates across brain-wide circuits. This is the same overarching question as Projects 1 & 2, but from the starting point of combining high resolution MRI and causal stimulation methods to pinpoint the neuroanatomical localisation of decision-making circuits. One particular focus is here how changes in functional connectivity between key brain areas (V5/MT, LIP, FEF) affect local activation, perceptual state, and decisions. For this, I use focussed ultrasound stimulation (FUS) to manipulate functional connectivity, a new method I was involved in establishing (Verhagen et al. 2019). Ultimately, these changes in functional connectivity will be linked to the real-time neural activity changes we characterize in Projects 1 and 2.

Projekt im Forschungsportal ansehen

The dynamics of neuronal population signalling during the temporal flow of perceptual events.
Laufzeit: 01.08.2019 bis 31.12.2023

When we walk along a busy street against the flow of people, looking for someone we hope to meet, we face a flood of visual inputs. In this situation, the brain mechanisms underlying visual processing are engaged continuously and for an unpredictable length of time. They must analyse incoming sensory information continuously to evaluate, initiate and guide motor actions at all times (walking, avoiding obstacles, scanning faces, etc). In contrast, most of our knowledge of the neuronal basis of visual processing is based on simple ‘laboratory’ situations: discrete trials with predictable start (cue), a fixed stimulus, end (another cue) and motor action (one of a few known alternative responses). One of the next major challenges for systems neuroscience will be to incorporate in our experimental paradigms some aspects of ‘normal vision’ such as the continuous integration of information over time and the ongoing evaluation for motor actions. My current proposal builds onto the well-defined experimental framework of perceptual decision-making, but rather than treating perception and behaviour as a sequence of discrete, finite episodes, each culminating in a decision, new experimental paradigms will probe how the brain engages in active, continuous monitoring of the dynamically changing flow of information. Previous work by myself and others has shown that neurons in extrastriate visual area V5/MT of primates can control 3D and motion components of a complex perceptual experience. Undertaking high-dimensional recordings from many neurons simultaneously in this well-described area of the visual system of awake behaving primates, I propose to investigate the broader questions of how neurons interact dynamically in space and time in order to shape visual perception and decision-making. This project has four parts. Firstly, in order to probe the role of cooperativity in neuronal circuits for visual perception, I will introduce unpredictable dynamic changes in visual stimuli and investigate the temporal relationship between these stimulus changes and percept-related neuronal activity and interactions. Do dynamical responses provide evidence for hysteresis in state-dependent neuronal interactions? Secondly, as a visual 3D-motion percept emerges, we will track the interactions between task-relevant neurons across functional subdomains like columns in real time. As a bistable stimulus is viewed over time (seconds), we will investigate the relationship between changes in neuronal interactions and the reported percept. Thirdly, we will test whether neuronal response patterns obtained with simple motion and 3D stimuli predict responses to more complex visual stimuli (such as biological motion and 3D motion patterns embedded in movie sequences). Lastly, we will employ the empirical data obtained from these high-dimensional recordings to challenge neuro-computational models of network dynamics for perceptual decisions and collaborate on their construction.

Projekt im Forschungsportal ansehen

Entwicklung einer Plattform für hochauflösende Magnetische Resonanz Spektroskopie (MRS) (7T) in Primaten in vivo
Laufzeit: 01.10.2020 bis 30.11.2022

Mit diesem Projekt planen wir in Magdeburg eine neue Technologieplattform einrichten, um die MR-Spektroskopie (MRS) im visuellen Kortex des Rhesusaffen zu ermöglichen, die MRS-Messungen mit der Aufzeichnung und Manipulation physiologischer Signale im MR-Scanner kombinieren soll. Magdeburg verfügt für Europa fast einzigartig über einen 7-Tesla-Hochfeld-MRT-Scanner, in dem auch die Rhesusaffen gebracht und gemessen werden können. Die Hochfeldstärke des Magdeburger Scanners ist ein wesentlicher Bestandteil bei der Einrichtung der vorgeschlagenen spektroskopischen Messungen.

Projekt im Forschungsportal ansehen

Decoding and controlling the elements of visual experience and perceptual decisions in primates
Laufzeit: 01.08.2019 bis 31.07.2022

DFG Programme Heisenberg Professorship

My Heisenberg project addresses the questions of how neurons interact dynamically in space
and time in order to shape visual perception and decision-making. I propose a new programme
of research that combines (i) high dimensional neurophysiological recordings, (ii) causal
interventions directly applied to the relevant neuronal circuits in a time or state-dependent manner
and (iii) a detailed analysis of the underlying neuronal circuitry. The only available experimental
model system to support this currently is the non-human primate, specifically the macaque
monkey. These animals have a visual system closely similar to humans, so that we can
experimentally adopt sophisticated behavioural paradigms. To investigate the underlying brain
connectivity and translate results to the human brain, cutting-edge recording and imaging
technologies for human and non-human primates will be essential for the future, as they are in
my present research.
The long-term scientific aim of my research is to understand and control the neuronal signals that
generate our rich visual experience. In recent years, the closest experimental links between brain
signals and perception have been established in awake primates between the activity of single
neurons and perceptual decisions. I have significant experience and contributions in this area and
now wish to extend this powerful research platform to more naturalistic settings of perception and
action. Specifically, the new work will focus on the continuity of perceptual activities. Rather than
treating perception and behaviour as a sequence of discrete, finite episodes, each culminating in
a decision, the new experimental paradigms will study of how the brain engages in active,
continuous monitoring of the dynamically changing incoming flow of information.

Projekt im Forschungsportal ansehen

CBBS: Kopfspule für hochauflösendes MRT (7T) in Primaten
Laufzeit: 20.02.2020 bis 31.12.2021

Die direkte elektrische Stimulation im Gehirn von Menschen ist ein wichtiges therapeutisches Mittel, z.B. kann die Tiefenhirnstimulation für Parkinson oder Depressionen Symptome lindern und Gehör-Prothesen können Schallwellen in elektrische Ströme übersetzen. Allerdings werden in vieler Hinsicht solche klinischen Anwendungen der direkten elektrischen Stimulation im Gehirn wie in einer "Blackbox" angewandt, also ohne genau in mechanistischer Weise zu verstehen, wie ein bestimmtes Stimulationsprogramm, seine spezifische Wirkung entfaltet und in wieweit dies von der stimulierten Hirnstruktur abhängt. Um die funktionalen Effekte direkt induzierter elektrischer Signale, wie sie in der Tiefenhirnstimulation im Menschen bereits in einigen wenigen Hirnstrukturen und Erkrankungen, z.B. Parkinson, verwendet werden, besser zu verstehen und gezielter auch für andere Krankheiten einsetzen zu können, planen wir Experimente mit elektrischer Gehirn-Stimulation im hochauflösenden 7T Siemens MRT am Leibniz-Institut in Magdeburg. Ein mechanistisches Verständnis soll zu einer patientengerechteren Anwendung führen.
Wir werden am 7T MRT des Leibniz-Institutes arbeiten und profitieren von der dortigen hohen Expertise und den Sequenzen, die für die Erforschung des menschlichen Gehirns in Gesundheit und Krankheit, eingerichtet wurde. Während die Sequenzen zur Messung nur eine geringe Anpassung zwischen Affe und Mensch benötigen, können die Kopfspulen, die zur Signalmessung benötigt werden, nicht einfach übernommen werden. Die Kopfspule muss für das bestmöglichste Signal so geformt sein, dass sie nahe am Kopf des wesentlich kleineren Affen sitzt und dass sie spezifische Zugänge für das Ableiten von implantierten Elektroden hat.

Projekt im Forschungsportal ansehen

SFB 1436/1 Start-up Funding - C05 "Intervening in circuits for cognitive resource allocation in primates"
Laufzeit: 01.07.2020 bis 31.12.2020

Der SFB 1436 hat das Ziel, neuronale Ressourcen auf allen Größenskalen zu untersuchen durch einen interdisziplinären Ansatz, welcher funktionelle und strukturelle Eigenschaften von kortikalen und subkortikalen Schaltkreisen mit Verhalten und Leistungsfähigkeit in Zusammenhang bringt und Interventionen untersucht. Technologische Fortschritte im Bereich der in vivo Gehirnbildgebung des menschlichen Gehirns sowie der multimodalen Modellierung sollen eine Brücke zwischen Molekularen Studien an Tiermodellen und Verhaltensstudien an Versuchspersonen und Patienten bauen.
Projekt C05 des SFB 1436 - in Kollaboration mit Prof. Dr. Petra Ritter (Charite, Berlin) - verfolgt einen kombinierten theoretischen und empirischen Ansatz, um kausal - von den Neuronen bis zum Verhalten - zu untersuchen, wie die Ressourcenzuteilung in visuellen und parietalen Hirnregionen durch die Veränderung der funktionalen Verbindungen in dem der menschlichen Kognition am nächsten kommenden Tiermodell, dem Rhesusaffen, gesteuert werden kann.

Projekt im Forschungsportal ansehen

Publikationen

2024

Abstract

Pulvinar projections to dorsal and ventral subdivisions of area LIP in the macaque

Ziegler, Sascha; Ahmed, Bashir; Parker, Andrew; Krug, Kristine

In: Neuroscience 2024 abstracts - Society for Neuroscience, Artikel PSTR404.08.2024 [Neuroscience 2024, Chicago, 5-9 October 2024]

Nicht begutachteter Zeitschriftenartikel

Distinct decision processes for 3D and motion stimuli in both humans and monkeys revealed by computational modelling

Rangotis, Revan; Nowakowska, Sabina; Dayan, Peter; Parker, Andrew J.; Kakaei, Ehsan; Akande, Abibat; Krug, Kristine

In: bioRxiv beta - Cold Spring Harbor : Cold Spring Harbor Laboratory, NY . - 2024, insges. 47 S.

Anatomical circuits for flexible spatial mapping by single neurons in posterior parietal cortex

Bashir, Ahmen; Ko, Hee Kyoung; Rüsseler, Maria; Smith, Jackson E. T.; Krug, Kristine

In: bioRxiv beta - Cold Spring Harbor : Cold Spring Harbor Laboratory, NY . - 2024, insges. 21 S.

2023

Abstract

Segregated divisions of macaque lateral intraparietal area (LIP) revealed by post-mortem diffusion-weighted imaging and tractography

Wirsum, Michelle; Smith, Jackson E. T.; Dyrby, Tim B.; Krug, Kristine

In: Neuroscience 2023 abstracts - Washington, D.C., Artikel R148.05

Histological validation of diffusion MRI and tractography for tracing fibre tracts in macaque extrastriate visual cortex

Sams, Danielle L. N.; Smith, Jackson E. T.; Gaillard, Corentin; Bashir, Ahmed; Bridge, Holly; Dyrby, Tim B.; Krug, Kristine

In: Neuroscience 2023 abstracts - Washington, D.C., Artikel PSTR150.14

Distinct decision processes for 3D and motion visual stimuli in humans and macaques

Rangotis, Mark Revan; Nowakowska, Sabina; Kakaei, Ehsan; Akande, Abibat; Krug, Kristine

In: Neuroscience 2023 abstracts - Washington, D.C., Artikel PSTR413.12

2022

Abstract

Linear decoding applied to V5/MT neuronal activity on past trials predicts current sensory choices

Ben Hadj Hassen, Sameh; Gaillard, Corentin; Parker, Andrew; Krug, Kristine

In: FENS Forum - FENS . - 2022, Artikel S03-489

Histological validation of the accuracy of diffusion tensor imaging for traching fibre tracts in macaque extrastriate visual cortex

Sams, Danielle; Smith, Jackson; Gaillard, Corentin; Ahmed, Bashir; Krug, Kristine

In: FENS Forum - FENS, 2022 . - 2022

Neuronal population activity in macaque V5/MT reflects and predicts visual perceptual strategy

Gaillard, Corentin; Ben Hadj Hassen, Sameh; Parker, Andrew; Krug, Kristine

In: Neuroscience 2022 - Society for Neuroscience, 2022 . - 2022

2021

Begutachteter Zeitschriftenartikel

Intra-areal visual topography in primate brains mapped with probabilistic tractography of diffusion-weighted imaging

Tang-Wright, K.; Smith, J. E. T.; Bridge, H.; Miller, K. L.; Dyrby, T. B.; Ahmed, B.; Reislev, N. L.; Sallet, J.; Parker, Andrew; Krug, Kristine

In: Cerebral cortex - Oxford : Oxford Univ. Press, Bd. 32 (2022), Heft 12, S. 2555-2574

2020

Begutachteter Zeitschriftenartikel

Behavioral flexibility is associated with changes in structure and function distributed across a frontal cortical network in macaques

Sallet, Jérôme; Noonan, MaryAnn P.; Thomas, Adam; O'Reilly, Jill X.; Anderson, Jesper; Papageorgiou, Georgios K.; Neubert, Franz X.; Ahmed, Bashir; Smith, Jackson; Bell, Andrew H.; Buckley, Mark J.; Roumazeilles, Léa; Cuell, Steven; Walton, Mark E.; Krug, Kristine; Mars, Rogier B.; Rushworth, Matthew F. S.

In: PLoS biology/ Public Library of Science - Lawrence, KS: PLoS, Volume 18 (2020), issue 5, article e3000605, 26 Seiten

Differences in frontal network anatomy across primate species

Barrett, Rachel L. C.; Dawson, Matthew; Dyrby, Tim B.; Krug, Kristine; Ptito, Maurice; D'Arceuil, Helen; Croxson, Paula L.; Johnson, Philippa J.; Howells, Henrietta; Forkel, Stephanie J.; Dell'Acqua, Flavio; Catani, Marco

In: The journal of neuroscience: the official journal of the Society for Neuroscience - Washington, DC: Soc., Bd. 40.2020, 10, S. 2094-2107

On the cortical connectivity in the macaque brain - a comparison of diffusion tractography and histological tracing data

Girard, Gabriel; Caminiti, Roberto; Battaglia, Alexandra; St-Onge, Etienne; Ambrosen, Karen S.; Eskildsen, Simon F.; Krug, Kristine; Dyrby, Tim B.; Descoteaux, Maxime; Thiran, Jean-Philippe; Innocenti, Giorgio M.

In: NeuroImage: a journal of brain function - Orlando, Fla.: Academic Press, Volume 221 (2020), article 117201

Coding perceptual decisions - from single units to emergent signaling properties in cortical circuits

Krug, Kristine

In: Annual review of vision science - Palo Alto, Calif.: Annual Reviews, Bd. 6.2020, 1

The effects of reward and social context on visual processing for perceptual decision-making

Takagaki, Kentaroh; Krug, Kristine

In: Current opinion in physiology - [Amsterdam]: Elsevier, Bd. 16.2020, S. 109-117

Editorial overview: The growing research networks of the physiology of vision

Parker, Andrew J.; Krug, Kristine

In: Current opinion in physiology - [Amsterdam]: Elsevier, Volume 16 (2020), Seite iii-v

Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe

Eichert, Nicole; Robinson, Emma C.; Bryant, Katherine L.; Jbabdi, Saad; Jenkinson, Mark; Li, Longchuan; Krug, Kristine; Watkins, Kate E.; Mars, Rogier B.

In: eLife - Cambridge: eLife Sciences Publications, Volume 9 (2020), article e53232, 69 Seiten

2019

Begutachteter Zeitschriftenartikel

Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex

Bridge, Holly; Bell, Andrew H.; Ainsworth, Matthew; Sallet, Jerome; Premereur, Elsie; Ahmed, Bashir; Mitchell, Anna S.; Schüffelgen, Urs; Buckley, Mark; Tendler, Benjamin C.; Miller, Karla L.; Mars, Rogier B.; Parker, Andrew J.; Krug, Kristine

In: eLife - Cambridge: eLife Sciences Publications, Volume 8 (2019), article e42325, insgesamt 29 Seiten

Interneuronal correlations at longer time scales predict decision signals for bistable structure-from-motion perception

Wasmuht, D. F.; Parker, A. J.; Krug, Kristine

In: Scientific reports - [London]: Macmillan Publishers Limited, part of Springer Nature, Volume 9 (2019), article number 11449, insgesamt 15 Seiten

Developmental trajectory of social influence integration into perceptual decisions in children

Large, Imogen; Pellicano, Elizabeth; Mojzisch, Andreas; Krug, Kristine

In: Proceedings of the National Academy of Sciences of the United States of America/ National Academy of Sciences - Washington, DC: National Acad. of Sciences, Bd. 116 (2019), 7, S. 2713-2722

Offline impact of transcranial focused ultrasound on cortical activation in primates

Verhagen, Lennart; Gallea, Cécile; Folloni, Davide; Constans, Charlotte; Jensen, Daria E. A.; Ahnine, Harry; Roumazeilles, Léa; Santin, Mathieu; Ahmed, Bashir; Lehericy, Stéphane; Klein-Flügge, Miriam C.; Krug, Kristine; Mars, Rogier B.; Rushworth, Matthew F. S.; Pouget, Pierre; Aubry, Jean-François; Sallet, Jerome

In: eLife - Cambridge: eLife Sciences Publications, Volume 8 (2019), article e40541, insgesamt 28 Seiten

Validation of structural brain connectivity networks - the impact of scanning parameters

Ambrosen, Karen S.; Eskildsen, Simon F.; Hinne, Max; Krug, Kristine; Lundell, Henrik; Schmidt, Mikkel N.; Gerven, Marcel A. J.; Mørup, Morten; Dyrby, Tim B.

In: NeuroImage - Orlando, Fla.: Academic Press, Volume 204 (2020), article 116207, insgesamt 13 Seiten

Electrochemical roughening and carbon nanotube coating of tetrodes for chronic single-unit recording

Xia, Zifeng; Arias-Gil, Gonzalo; Deckert, Martin; Vollmer, Maike; Curran, Andrew; Herrera-Molina, Rodrigo; Brosch, Marcel; Krug, Kristine; Schmidt, Bertram; Ohl, Frank W.; Lippert, Michael T.; Takagaki, Kentaroh

In: bioRxiv beta: the preprint server for biology - Cold Spring Harbor: Cold Spring Harbor Laboratory, NY . - 2019, insges. 25 S.

2018

Begutachteter Zeitschriftenartikel

Die neuronalen Signale, die Wahrnehmung verändern

Krug, Kristine; Parker, Andrew J.

In: e-Neuroforum, Walter de Gruyter GmbH, 2018, Bd. 24, Heft 1, S. 39-48

2017

Buchbeitrag

Organization of the Social Brain in Macaques and Humans

Noonan, M.P.; Mars, R.B.; Neubert, F.X.; Ahmed, B.; Smith, J.; Krug, K.; Sallet, J.

In: Decision Neuroscience, Elsevier, 2017, S. 189-198

Begutachteter Zeitschriftenartikel

Short parietal lobe connections of the human and monkey brain

Catani, Marco; Robertsson, Naianna; Beyh, Ahmad; Huynh, Vincent; de Santiago Requejo, Francisco; Howells, Henrietta; Barrett, Rachel L.C.; Aiello, Marco; Cavaliere, Carlo; Dyrby, Tim B.; Krug, Kristine; Ptito, Maurice; D'Arceuil, Helen; Forkel, Stephanie J.; Dell'Acqua, Flavio

In: Cortex, Elsevier BV, 2017, Bd. 97, S. 339-357

Calretinin interneuron density in the caudate nucleus is lower in autism spectrum disorder

Adorjan, Istvan; Ahmed, Bashir; Feher, Virginia; Torso, Mario; Krug, Kristine; Esiri, Margaret; Chance, Steven A; Szele, Francis G

In: Brain, Oxford University Press (OUP), 2017, Bd. 140, Heft 7, S. 2028-2040

The neural events that change perception

Krug, Kristine; Parker, Andrew J.

In: e-Neuroforum, Walter de Gruyter GmbH, 2017, Bd. 24, Heft 1, S. A31-A39

2016

Buchbeitrag

Changes in variance of neuronal signals may be perceptually relevant for stereo vision

Cicmil, Nela; Parker, Andrew; Krug, Kristine

In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), ACM, 2016

Begutachteter Zeitschriftenartikel

Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates

Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.

In: Cerebral Cortex, Oxford University Press (OUP), 2016, Bd. 26, Heft 10, S. 3928-3944

Neural architectures for stereo vision

Parker, Andrew J.; Smith, Jackson E. T.; Krug, Kristine

In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, 2016, Bd. 371, Heft 1697, S. 20150261

Defining the V5/MT neuronal pool for perceptual decisions in a visual stereo-motion task

Krug, Kristine; Curnow, Tamara L.; Parker, Andrew J.

In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, 2016, Bd. 371, Heft 1697, S. 20150260

2015

Begutachteter Zeitschriftenartikel

Playing the electric light orchestrahow electrical stimulation of visual cortex elucidates the neural basis of perception

Cicmil, Nela; Krug, Kristine

In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, 2015, Bd. 370, Heft 1677, S. 20140206

Reward modulates the effect of visual cortical microstimulation on perceptual decisions

Cicmil, Nela; Cumming, Bruce G; Parker, Andrew J; Krug, Kristine

In: eLife, eLife Sciences Publications, Ltd, 2015, Bd. 4

Understanding the brain by controlling neural activity

Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, 2015, Bd. 370, Heft 1677, S. 20140201

Expertenprofil
NEURAL CIRCUITS FOR PERCEPTION AND DECISION-MAKING IN PRIMATES

My research group seeks to explain and alter perceptual decision-making from the level of single brain cells through to mental states. With this work, we aim to understand the neuronal code underlying conscious processes. One fundamental problem is that neuronal activity sometimes represents processes of which we are aware and sometimes codes for information to which we have no access (Krug et al. J. Neurophysiology 2004). Using electrical microstimulation of neurons in rhesus monkeys, we can show how the activity of neurons in visual cortex causally contributes to the perceptual appearance of visual objects. For instance, we have identified a strong cognitive signal in the activity of single neurons in extrastriate visual area V5/MT that shapes perceptual decisions about 3D-motion figures (Dodd et al. J. Neuroscience 2001; Krug et al. Current Biology 2013). This brain area in rhesus monkeys has a structural and functional homologue in humans (Large et al. Cerebral Cortex 2016). We have shown that contextual effects, like expected reward and social influence, interact with sensory signals in the brain and potentially affect visual perception (Cicmil el al. elife 2015; Large et al. PNAS 2019). This has profound implications for our understanding of decision-making in healthy individuals and in individuals with a psychiatric disorder.

In recent years, the closest experimental links between brain signals and perception have been established in awake primates between the activity of single neurons and perceptual decisions. Our current work builds on this powerful research platform my research group has built and extends it to increasingly naturalistic settings of perception and action. Specifically, our current research focuses on the continuity of perceptual activities. Rather than treating perception and behaviour as a sequence of discrete, finite episodes, each culminating in a decision, the new experimental paradigms will study of how the brain engages in active, continuous monitoring of the dynamically changing incoming flow of information. Linking the activity of brain cells in non-human primates with human MRI through common perceptual tasks and computational models, we investigate altered decision-making and perception in patients with psychological disorders, like autism and bipolar disorder.
My work has been funded by the DFG, the Wellcome Trust, the Royal Society, the BBSRC, and the Volkswagen Foundation.
Vita
Education
  • 1991-1994  BA Honours in Physiological Sciences, Oxford University, UK
  • 1994-1997  DPhil in Neuroscience; Thesis title: ‘Ordering geniculate input into primary visual cortex’, Oxford University, UK
  • 2010  Diploma in Psychology (Conversion for Postgraduates), Distinction, Open University, UK

Employment
  • 2019-  Heisenberg-Professor and Chair in Sensory Physiology, Otto-von-Guericke Universität Magdeburg & Leibniz-Institut für Neurobiologie, Germany
  • 2014-2020  Associate Professor of Neuroscience at Oxford University, UK
  • 2005-2015  Royal Society University Research Fellow, Oxford University, UK
  • 2001-2005  Royal Society Dorothy Hodgkin Fellow, Oxford University, UK
  • 1998-2001  Wellcome Trust Postdoctoral Scientist, Oxford University , UK
  • 1998  Max-Planck Postdoctoral Scholar, MPI Biological Cybernetics, Tübingen, Germany

Academic Activities
  • Chair of Scientific Advisory Board of the German Primate Research Centre (DPZ) 2020 -
  • Board of Reviewing Editors Elife 2019 –
  • Scientific Advisory Board of the German Primate Research Centre (DPZ), Member and Deputy Chair  2018 – 2020; 
  • Scientific Advisory Board of the Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB)  2018 –
  • Agence Nationale de la Recherche (ANR), Scientific Evaluation Committee Integrated Neuroscience  2017 –
  • Editorial Board, Philosophical Transactions of the Royal Society B  2014 – 2020
  • UK Expert Group in NHP Neuroscience Research 2015 –
  • Newton Advanced Fellowship Selection Panel (Selection of international research fellows)  2014 - 2020
  • Hooke Committee of the Royal Society   2013 - 2016
  • MRC Advisory Board for the Centre for Macaques (CFM)   2011 - 2019
  • Royal Society Research Grant Panel   2012 - 2015                                                 
  • Royal Society International Exchanges Scheme   2011 - 2013                                
  • Royal Society International Travel Grants Panel   2009 - 2011

Awards
  • 2021-2024 Visiting Professor of Neuroscience, Oxford University
  • 2018  Heisenberg Professor (Deutsche Forschungsgemeinschaft [DFG])
  • 2017  Understanding Animal Research Openness Award (with BMS colleagues Oxford)
  • 2016  Fellow of the Royal Society of Biology ([FRSB] elected by resolution of council)
  • 2006  Member of the European Platform for the Mind Sciences, the Life Sciences and the Humanities (Volkswagen Stiftung)
  • 2006  Senior Research Fellow at Oriel College, Oxford University
  • 2004  University Research Fellow of the Royal Society       
  • 2003  BA Mediafellow with BBC Radio Science Unit and BBC News Online
  • 2003  Prize for the best contributed paper at the Rank Prize meeting “The Probabilistic Brain” in Cambridge
  • 2002-2006  Hayward Junior Research Fellow at Oriel College, Oxford
  • 2001-2005  Dorothy Hodgkin Fellowship of the Royal Society       
  • 1999-2002  Prize Fellowship at Magdalen College, Oxford
  • 1998  Rolleston Memorial Prize of Oxford University
  • 1998  Glaxo-Wellcome Prize of the BNA for the most outstanding thesis
  • 1994-1997  Wellcome Prize Scholarship (open competition)
  • 1992-1997  Stipendiatin der Studienstiftung des deutschen Volkes

Letzte Änderung: 08.06.2023 - Ansprechpartner: Webmaster