Projekte

Aktuelle Projekte

Mikro-/Nanotechnologie für die Zukunft - Physikalische Modellierung des Wafer-to-Wafer-Bonding
Laufzeit: 01.11.2024 bis 31.12.2027

Die vertikale Stapelung integrierter Schaltkreise (IC), die so genannte 3-D-Integration, hat sich als bahnbrechende Lösung erwiesen, um die Grenzen der herkömmlichen kontinuierlichen Skalierung einzelner Komponenten zu überwinden. Die 3-D-Integration ermöglicht bessere Leistungen aufgrund kürzerer Verbindungen, geringerer Systemgrößen und verbesserter Systemheterogenität. Schaltungsebenen können separat hergestellt werden, was die Kombination inkompatibler Herstellungsverfahren in einem einzigen 3D-IC (z. B. Speicher und Logik) ermöglicht. Unter mehreren 3D-Integrationsverfahren hat sich das Wafer-to-Wafer-Hybrid-Bonden als Schlüsseltechnologie für die Herstellung von Verbindungen mit hoher Dichte herauskristallisiert, die für die Feinaufteilung von 3D-System-on-Chip-Anwendungen erforderlich sind. Bei dieser Bondtechnologie werden beide Wafer mit einer dielektrischen Schicht mit eingebetteten Cu-Pads versehen. Das Waferpaar wird dann mit einem geringen vertikalen Abstand von einigen zehn Nanometern genau ausgerichtet. Der obere Wafer wird durch einen lokal begrenzten Bereich in seiner Mitte geschoben, um den ersten Kontakt zwischen den Wafern herzustellen. Die Verbindung wird dann aufgrund der Wechselwirkungskräfte zwischen den gegenüberliegenden Wafern in einem wellenförmigen Muster fortgesetzt.

Eine große Herausforderung bei diesem Verfahren ist die Erzielung eines ausreichend geringen Ausrichtungsfehlers zwischen den verbundenen Wafern, für den die derzeitigen und künftigen Anforderungen der Industrie äußerst streng sind. Es ist keine triviale Aufgabe, diese Anforderungen zu erfüllen, da die endgültige Ausrichtung von verschiedenen Parametern beeinflusst wird, von denen einige aufgelistet werden können: Wafer-Eigenschaften (Form, Eigenspannung, mechanische Eigenschaften), Wahl des dielektrischen Materials, Extrusion/Rezession der Cu-Pads, Design des Chucks, in dem die Wafer gehalten werden, Bondrezeptur, anfänglicher Abstand zwischen den Wafern, Größe der Punktkontaktkraft, Adhäsionskräfte zwischen den Dielektrika, Luftviskosität und Gravitationseffekte. In Anbetracht der zahlreichen Parameter und ihrer potenziellen Wechselwirkungen sind Optimierungsversuche, die sich ausschließlich auf experimentelle Ansätze stützen, aufgrund ihrer Langsamkeit und ihrer hohen Kosten nur begrenzt möglich. Daher ist es notwendig, zusätzliche Methoden auf der Grundlage von Simulationstechniken zu entwickeln.

Ziel dieses Dissertationsthemas ist es, das Verständnis sowohl der physikalischen Grundlagen der Ausbreitung von Klebstoffen als auch der Auswirkungen mechanischer Randbedingungen mit Hilfe von Modellierungs- und Simulationstechniken zu vertiefen. Um dies zu erreichen, wird eine physikalisch basierte mechanische Modellierungsumgebung (basierend auf der Finite-Elemente-Methode) entwickelt, um die Klebephänomene zu untersuchen. Die Modellierung wird zunächst mit vereinfachten 2-D-Modellen beginnen, die später zu vollständigen 3-D-Simulationen des Waferbondings erweitert werden. Soweit möglich, werden Bondwellenmessdaten zusammen mit experimentellen Informationen bereitgestellt, um die Simulationen zu kalibrieren. Die aus den Simulationen gewonnenen Erkenntnisse werden der Industrie und der akademischen Welt als Orientierungshilfe für die Wafervorbereitung und die Bondkonfigurationen dienen.
Dieser Text wurde mit DeepL übersetzt

Projekt im Forschungsportal ansehen

MoPeFf-KIDZ - Modularer Peristaltischer Flächenförderer mit KI-basiertem Digitalen Zwilling für Kleinstsendungen
Laufzeit: 01.04.2024 bis 31.12.2027

Der Modulare Peristaltische Flächenförderer (MPFF) ist ein gänzlich neuartiges Gerät, das erstmals konzeptionell die Vereinzelung und Sortierung von biegeweichen Kleinstendungen (Polybags) erlaubt und damit eine Alternative zur kostenintensiven händischen Verarbeitung darstellt. Erstmalig soll parallel zur Entwicklung des realen MPFF ein KI-basierter Digitaler Zwilling (DZ) entwickelt werden, der auf Basis von KI-optimierten Simulationsmodellen Vorhersagen des Systemverhaltens und eine automatisierte Parametrierung der Aktoren und Sensordatenverarbeitung erlaubt.

Projekt im Forschungsportal ansehen

Integration physikalisch motivierter Materialmodelle für gefüllte Elastomere in Mehrkörpersimulationen hochdynamischer Systeme
Laufzeit: 01.05.2024 bis 30.04.2027

Das DFG geförderte Forschungsprojekt setzt sich zum Ziel, die numerische Prädiktionsfähigkeit für technische Systeme zu erhöhen, indem eine ganzheitliche Simulationsmethodik implementiert wird, die eine effiziente Kopplung zwischen einer Mehrköpersimulation und einem nichtlinearen FE-Modell ermöglicht. Eine Erweiterung des physikalisch motivierten dynamischen Flokkulationsmodells wird dabei genutzt, um das nichtlineare Materialverhalten elastomerer Lagerelemente vollumfänglich und präzise abzubilden. Dabei stehen vor allem die Eigenschaftsänderungen der Lager unter mehrachsiger Belastung im Fokus, welche bei derzeitigen Modellierungsansätzen häufig vernachlässigt werden. Da die Einbindung eines detaillierten FE-Modells zu einer Steigerung der notwendigen Rechenressourcen führt, werden in diesem Projekt verschiedene Detaillierungsstufen der Solverkopplung implementiert und analysiert, mit dem Ziel eine Reduktion der Rechenzeit unter akzeptablen Genauigkeitseinbußen zu erlauben. Die daraus resultierenden unterschiedlichen Komplexitätsstufen der entwickelten Methodik werden mit den herkömmlichen Modellierungsstrategien umfassend verglichen. Es wird eine Bewertung der einzelnen Kopplungsstrategien bezüglich des Implementierungs- und Parametrisierungsaufwands sowie der physikalischen Interpretierbarkeit und der erforderlichen Rechenressourcen vorgenommen. Dabei werden die entwickelten und validierten FE-Modelle basierend auf dem DFM auch auf ihre Eignung hin untersucht, in welchem Umfang und mit welcher Zuverlässigkeit sich einmalig bestimmte Materialparameter auf weitere Geometrien und Belastungsszenarien übertragen lassen. Abschließend findet eine Beurteilung der Genauigkeit aller untersuchter Strategien zur Kopplung der FEM und MKS mit Hilfe von Versuchsergebnissen realer Applikationen statt. Die Einbindung der FEM in die MKS erfolgt dazu sowohl direkt über verschiedene Solverkopplungen als auch indirekt durch die Generierung eines Kennfelds bzw. eines Surrogate-Modells mit Hilfe des FE-Modells zur Nutzung innerhalb der MKS. Als erstes Anwendungsbeispiel dient eine Laborzentrifuge, deren Schwingungsamplituden sowie Betriebsresonanzen gemessen und mit den numerisch erzielten Ergebnissen der jeweiligen Kopplungsstrategien verglichen werden. Des Weiteren wird die entwickelte Methodik im Rahmen einer Schwingungsanalyse von Fahrwerkskomponenten eines Elektrofahrzeugs angewendet und validiert.

Projekt im Forschungsportal ansehen

SOFINA -Simulationsgestützte Optimierung von Flow-Divertern zur Behandlung intrakranieller Aneurysmen
Laufzeit: 01.04.2023 bis 31.03.2026

Ziel des Projekts ist die Erforschung von Möglichkeiten zur Optimierung der fluiddynamischen Behandlung intrakranieller Aneurysmen, um die Okklusionszeit zu verkürzen, den Bedarf an Nachbehandlungen zu reduzieren sowie die Gefahr von Rupturen zu eliminieren. Dazu sollen zum einen neuartige, neurovaskuläre Implantate mit verbesserten flussmodellierenden Eigenschaften erarbeitet werden (Zielwerte: lokal reduzierte Porosität, optimierte Anpassungsfähigkeit an die Anatomie). Mögliche individualisierte Lösungsansätze sind die Weiterentwicklung geflochtener Strukturen oder die Verwendung neuartiger Polymervliese auf der Trägerstruktur. Zum anderen werden “intelligente” Software-Tools entwickelt, die auf Basis einer virtuellen Katheterführung durch komplexe 3D-Gefäßmodelle von Patient*innen eine verbesserte Planung und Implantation ermöglichen. Dabei werden Verformungszustände sowohl des Katheters als auch des gecrimpten Implantats auf seinem Weg zum Gehirnaneurysma simuliert. Zur Abschätzung der Wirksamkeit (intra-aneurysmale Thrombosierung) des Implantats wird in Ergänzung dazu eine Blutflusssimulation durchgeführt. Anhand der Ergebnisse sollen den Interventionalist*innen vorab und während der Behandlung Hinweise zur Handhabung des Implantats bereitgestellt werden. Eine solche Software ermöglicht eine gezielte Optimierung der Implantateigenschaften, um bspw. lokalisationsabhängige Geschwindigkeits- und Wirbelstärkenabsenkungen, um bis zu 50 % gegenüber dem unbehandelten Zustand zu erzielen.

Projekt im Forschungsportal ansehen

Strategien zur dynamischen Adaption der Diskretisierung basierend auf höherwertigen Übergangselementen für die Analyse von Wellenausbreitungsvorgängen mittels Hochleistungsrechnern
Laufzeit: 01.11.2023 bis 31.10.2025

Methoden der adaptiven Netzverfeinerung (AMR) sind in vielen industriellen und auch wissenschaftlichen Anwendungen unbedingt erforderlich, um den numerischen Aufwand zu reduzieren und dadurch komplexe Problemstellungen überhaupt erst handhabbar zu machen. Betrachtet man jedoch die gegenwärtige Literatur zum Thema AMR, kristallisieren sich einige Unzulänglichkeiten heraus, die noch gelöst werden müssen. Um eine lokale Netzverfeinerung zu erreichen, müssen entweder hybride Netze bestehend aus Simplex- und Tensor-Produkt-Elementen oder Zwangsbedingungen genutzt werden. Beide Ansätze führen jedoch unweigerlich zu lokalen Genauigkeitsverlusten. Darüber hinaus werden in industriellen Anwendungen oft lineare Ansatzfunktionen verwendet, weshalb nur eine algebraische Konvergenz erzielt werden kann. Im wissenschaftlichen Umfeld gibt es selbstverständlich auch Ansätze für eine vollständige hp-Adaptivität. Diese Verfahren sind aber aufgrund ihrer Komplexität in der Implementierung auf Netze mit einem hängenden Knoten pro Elementkante/-fläche ausgelegt und weisen Schwächen in der Anwendung auf hoch dynamische Prozesse (explizite Zeitintegration) auf, da diagonale Massenmatrizen nicht verfügbar sind. Anzumerken ist, dass im Vergleich zu einfachen h-Verfeinerungen aber exponentielle Konvergenzraten erreicht werden können. Die genannten Probleme können durch höherwertige Übergangselemente, die auf der Basis der sogenannten gemischten (transfiniten) Interpolation hergeleitet werden, leicht beseitigt werden. Die Elementformulierung beruht auf Vierecks- bzw. Hexaederelementen im Referenzgebiet und kann beliebige Diskretisierungen miteinander koppeln. Im Prinzip können verschiedenste Elementfamilien gekoppelt werden, die sich nicht nur in Größe oder Ansatzordnung unterscheiden. Da der Funktionsraum nicht durch Zwangsbedingungen eingeschränkt werden muss, müssen auch keine Kompromisse hinsichtlich der Genauigkeit eingegangen werden. Für hochfrequente, transiente Berechnungen werden in diesem Projekt außerdem noch geeignete Methoden zur Diagonalisierung der Massenmatrix erarbeitet. Die entstandene Elementfamilie bildet die Basis für dynamische Netzverfeinerungen. Das besondere Merkmal dieses Ansatzes ist die gezielte Kombination von Verfeinerungs- und Vergröberungsschritten, die in jedem Zeitschritt der Simulation ausgeführt werden. Damit können optimale Konvergenzraten unter möglichst geringem numerischen Aufwand erzielt werden. Um die Effizienz der entwickelten Technik weiter zu steigern, werden die Algorithmen für Hochleistungsrechner aufbereitet. Die herausragenden Eigenschaften der vorgeschlagenen Methodik werden an ausgewählten Beispielen der Wellenausbreitung verdeutlicht. Dazu werden die kontinuierliche Strukturüberwachung mittels geführter Wellen in mikrostrukturierten Materialien und die Analyse seismischer Aktivitäten genutzt.

Projekt im Forschungsportal ansehen

Entwurf und Bewertung einer neuartigen dynamischen Knöchel-Fuß-Orthese aus Silikon/SMA-Materialien
Laufzeit: 01.10.2022 bis 30.09.2025

Knöchel-Fuß-Orthesen (AFOs) sind Hilfsmittel zur Rehabilitation eines pathologischen Gangs, der z. B. durch einen Schlaganfall verursacht wird. Ziel dieser Forschungsarbeit ist es, ein neuartiges AFO zu entwerfen, zu modellieren, zu simulieren, herzustellen und zu testen, das bei relativ geringen Kosten Benutzerfreundlichkeit, Bewegungsfreiheit und hohe Leistungsfähigkeit für anspruchsvolle Aktivitäten gewährleisten soll. Forschungsprobleme ergeben sich aus der zunehmenden Nachfrage nach AFOs auf Polymerbasis, die relativ geringe biomechanische Eigenschaften haben und langfristig zu Hautschwitzen und -reizungen führen können. Darüber hinaus gibt es Probleme im Zusammenhang mit den hohen Kosten der neueren AFOs aus modernen Verbundwerkstoffen oder Kohlefasern, den Marktbedürfnissen (Orthopädietechniker) und den Anwendern sowie der Notwendigkeit einer neuartigen AFO, die den Anforderungen gerecht wird und dazu beiträgt, Orthesen für jeden Patienten passend herzustellen. So könnten Orthopädietechniker Zeit sparen und einen bequemeren AFO-Prototyp erhalten, der ihnen bei der Behandlung ihrer Patienten hilft.
Diese Studie umfasst aus angewandter Sicht den Entwurf, die Modellierung und die Simulation einer neuartigen Knöchel-Fuß-Orthese auf der Grundlage von Silikon, einer Formgedächtnislegierung (SMA) und elastischen Bändern. Diese wiederum gewährleistet Bewegungsfreiheit und hohe Leistung bei anspruchsvollen Aktivitäten. In praktischer Hinsicht umfasst sie auch die Herstellung der Knöchel-Fuß-Orthese auf der Grundlage des oben genannten Designs und der Materialien sowie die Durchführung geeigneter mechanischer und biomechanischer Tests. Diese Studie umfasst auch eine Literaturübersicht und eine Beschreibung der Materialien, Methoden und Geräte, die bei der Konstruktion, Modellierung, Simulation, Herstellung und Prüfung einer neuartigen dynamischen Knöchel-Fuß-Orthese verwendet werden.
Dieser Text wurde mit DeepL übersetzt

Projekt im Forschungsportal ansehen

Abgeschlossene Projekte

Autoregressive neuronale Netze zur Vorhersage des Verhaltens von viskoelastischen Materialien
Laufzeit: 01.09.2022 bis 31.08.2025

Neuronale Netze werden bereits in großem Umfang im Bereich der Datenanalyse eingesetzt. Gängige Materialmodelle bestehen aus physikalisch basierten Gleichungen, um das reale Verhalten so gut wie möglich zu beschreiben. Messungen werden verwendet, um die Materialparameter anzupassen, aber die Genauigkeit des Modells hängt von der Komplexität der konstitutiven Gleichungen ab. Neuronale Netze bieten die Möglichkeit, ein Material mit denselben Testdaten zu beschreiben, ohne dass komplexe und physikalisch basierte Materialgesetze abgeleitet werden müssen.
Betrachtet man eine einachsige Spannungs-Dehnungs-Kurve eines hyperelastischen Materials, so lässt sich ein klassisches neuronales Netz zur Beschreibung dieses Verhaltens leicht einrichten. Während des Trainings findet das Netz eine gute Anpassungsfunktion, die hauptsächlich von der Anzahl der Gewichte und Verzerrungen sowie der Menge der Trainingsdaten abhängt. Diese Gesamtparameter sind nicht physikalisch motiviert, da sie nur die Spannungswerte mit den Dehnungswerten über Multiplikation und die sigmoiden Übertragungsfunktionen im Bereich der Trainingsmenge verbinden. Dies ist der Grund, warum klassische neuronale Netze eine sehr schlechte Extrapolationsleistung haben.
Im Gegensatz dazu können autoregressive neuronale Netze eine Zeitreihe trainieren, z. B. die Spannungskurve mit einer konstanten Dehnungsrate, wobei frühere Spannungswerte zur Berechnung der nächsten verwendet werden. Anstatt eine Spannungs-Dehnungs-Funktion zu trainieren, versuchen diese Netze, eine rekursive Formulierung zwischen den Spannungswerten zu finden. Bei externen Eingaben können auch andere Variablen in die rekursive Formulierung einfließen, z. B. die Dehnungsrate. Wenn die Trainingsdaten unterschiedliche Dehnungsraten enthalten, kann das Netz diese berücksichtigen. Darüber hinaus sind weitere Variablen möglich, zum Beispiel unterschiedliche Temperaturen.
Aufgrund der rekursiven bzw. regressiven Funktionalität kann das Netz Spannungs-Dehnungs-Kurven berechnen, auch über den Bereich der Trainingsdaten hinaus. Mit einem ausreichend großen Trainingsdatensatz ist es somit möglich, komplexeres Materialverhalten besser zu beschreiben als mit klassischen Materialmodellen.
In diesem Projekt sollen die Eigenschaften von viskoelastischen Materialien mit einem autoregressiven neuronalen Netz geschätzt werden. Die Berechnung einer Spannungs-Dehnungs-Kurve mit verschiedenen Dehnungsraten und das Training der Netze kann in wenigen Minuten durchgeführt werden. Die Vorhersage mit verschiedenen Dehnungsraten und Spannungswerten außerhalb des Bereichs der Trainingsdaten funktioniert sehr gut mit nur einem kleinen Fehler und viel weniger Rechenzeit. Neben der Optimierung der Netzarchitektur wird auch die Möglichkeit anderer externer Inputs wie Temperatur oder Training mit einem realen Messdatensatz untersucht.
Dieser Text wurde mit DeepL übersetzt

Projekt im Forschungsportal ansehen

Erweiterung fiktiver Gebietsmethoden für vibroakustische Fragestellungen - Analyse heterogener Dämmmaterialien
Laufzeit: 01.08.2022 bis 31.07.2025

Die Vorhersage des akustischen Verhaltens von Systemen, die Materialien mit komplexer Mikrostruktur beinhalten, ist aus mehreren Gründen eine große Herausforderung. Zum einen ist es sehr aufwendig, hochauflösende numerische Modelle mit Hilfe von geometriekonformen Diskretisierungen aufzubauen und zum anderen müssen alle physikalisch relevanten Wechselwirkungen der Struktur sowohl mit dem umgebenden als auch mit dem eingeschlossenen Fluid berücksichtigt werden. Die geometriekonforme Diskretisierung von heterogenen Materialien mit komplexer Mikrostruktur führt in der Regel zu einer sehr hohen Anzahl von finiten Elementen und somit zu nicht vertretbaren Rechenzeiten. Als zielführende Alternative haben sich in den letzten Jahren fiktive Gebietsmethoden, wie die Finite Cell Method (FCM), herauskristallisiert. Zur Erfassung der akustischen bzw. vibroakustischen Eigenschaften muss die FCM für das neue Anwendungsgebiet in einigen Aspekten erweitert werden. Zunächst müssen die akustische Wellengleichung für Berechnungen im Zeitbereich und die Helmholtz-Gleichung für Analysen im Frequenzbereich mit Hilfe von fiktiven Gebietsmethoden diskretisiert werden. Weiterhin müssen geeignete Kopplungsstrategien zwischen dem Struktur- und Fluidgebiet entwickelt werden. Die Teilfelder können dabei sowohl schwach (rückwirkungsfrei) als auch stark (rückwirkungsbehaftet) gekoppelt werden. Der Vorteil von fiktiven Gebietsmethoden ist neben der hochgenauen Auflösung der Geometrie (trotz nicht konformer Diskretisierung) die Möglichkeit der Überlagerung von Struktur- und Fluidelementen. Damit kann eine effektive Strategie zur vibroakustischen Kopplung heterogener Materialien entwickelt werden. Der numerische Aufwand dieser komplexen Simulationen ist auch unter Nutzung fiktiver Gebietsmethoden immer noch sehr hoch. Daher ist es ein weiteres Ziel, neben den mikrostrukturell aufgelösten Modellen auch vereinfachte Modelle auf der Basis von Verfahren zur numerischen Homogenisierung abzuleiten. Trotz der starken Abstraktion der Wirklichkeit wird erwartet, dass für verschiedene Anwendungen brauchbare Ergebnisse erzielt werden können. Der letzte Schwerpunkt des Projektes besteht in der experimentellen Validierung der entwickelten numerischen Methoden. Dazu werden verschiedene Versuchsstände genutzt. Für die Umsetzung der vibroakustischen Kopplung ist das Schwingungsverhalten der Struktur entscheidend. Dieses kann mit Hilfe eines 3D Laser-Scanning-Vibrometers untersucht werden. Zusätzlich werden die frequenzabhängigen akustischen Parameter unter Nutzung verschiedener einfacher Messaufbauten, wie bspw. einem Kundtschen Rohr, gemessen und jeweils mit den simulativ ermittelten Ergebnissen verglichen. Weiterhin wird in einem Freifeldraum die Schallabstrahlung mit Hilfe von Mikrofon-Arrays und Fernfeldmikrofonen vermessen. Auf der Basis dieser Daten kann die Leistungsfähigkeit der implementierten Modelle nachgewiesen werden. Abschließend werden Richtlinien für deren Nutzung abgeleitet.

Projekt im Forschungsportal ansehen

Erweiterung fiktiver Gebietsmethoden für vibroakustische Fragestellungen – Analyse heterogener Dämmmaterialien
Laufzeit: 01.04.2023 bis 31.03.2025

Das Projekt widmet sich der Entwicklung einer effizienten Berechnungsmethodik zur Lösung dreidimensionaler vibroakustischer Problemstellungen unter Einsatz poröser Dämmmaterialien. Hierbei ist es das Ziel, die Mikrostruktur des Dämmmaterials aufzulösen, um aktuelle Grenzen der oft eingesetzten Biot’schen Theorie zu überwinden, die insbesondere für die Modellierung geschlossenporiger Schäume ungeeignet scheint. Um die angestrebte, äußerst aufwendige geometrieaufgelöste Modellierung zu ermöglichen, sollen fiktive Gebietsmethoden mit höherwertigen Ansatzfunktionen eingesetzt werden. Diese lassen sich zum einen sehr vorteilhaft auf Voxel-Daten anwenden und zum anderen ist eine hohe Effizienz für Wellenausbreitungsprobleme zu erwarten.

Projekt im Forschungsportal ansehen

"COCOON" - aCOustiC Optimized hOusiNg
Laufzeit: 01.06.2022 bis 30.11.2024

Simulationsbasierte und sensorisch funktionalisierte Gehäusekonzeptionierung

Im Rahmen des ZIM-Netzwerkes INSTANT werden vordergründig medizinische Fragestellungen erörtert. Das FuE-Projekt COCOON fokussiert innerhalb des Netzwerks die Verminderung von Geräuschbelastungen bei diagnostischen und interventionellen bildgeführten Verfahren.
Verschiedene medizinische Studien zeigen, dass andauernde hohe Geräuschpegel zu Konzentrationsschwächen, Stress, Beeinträchtigungen des Gedächtnisses, allgemeiner Leistungsminderung und anderen Erscheinungen bis hin zum Burnout-Syndrom führen können. Solche Stress- und Angstsituationen sind der Genesung von Patienten unzuträglich und führen zu längeren Behandlungszeiten und somit zu vermehrten Kosten. Auf der Seite des klinischen/medizinischen Personals können die Geräuschbelastungen, beispielsweise bei mehrstündigen bzw. mehreren aufeinanderfolgenden Interventionen zu Konzentrationseinbußen und Behandlungsfehlern führen.
Die Entstehung von lauten Geräuschen ist bei vielen Maschinen nicht oder nur mit Eingriff in die bestehende Struktur zu unterbinden. Allerdings können technische Maßnahmen ergriffen werden, um die Geräuschausbreitung und -weiterleitung zu behindern und somit die störenden Geräuschemissionen zu minimieren. Im Projekt COCOON werden Verfahren zur Konzeptionierung und Fertigung akustisch optimierter Gehäuse für medizinische Großgeräte erforscht, wodurch sich auch hinsichtlich Zulassung und verwendeter Materialien sehr hohe Ansprüche ergeben.
Des Weiteren wird der ambitionierte Ansatz verfolgt ein "Diagnosesystem” zur Zustandserfassung der Produktfunktionalität zu erforschen. Die frühzeitige Alarmierung bei Fehlfunktionen soll Geräteausfälle minimieren und kann so zur Produktüberwachung nach dem Inverkehrbringen beitragen.

Projekt im Forschungsportal ansehen

Bewertung der Phasenmorphologie und ihrer Auswirkungen auf das viskoelastische Verhalten von Elastomermischungen
Laufzeit: 01.01.2020 bis 31.12.2023

Füllstoffverstärkte Elastomermischungen spielen eine Schlüsselrolle bei der Entwicklung und Optimierung von Hochleistungsgummiwaren wie Reifen oder Förderbändern. In den meisten Fällen entwickelt sich während der letzten Verarbeitungsschritte (Extrusion, Kalandrieren, Spritzgießen) eine phasengetrennte, anisotrope Mischungsmorphologie, die ihre freie Energie durch Koagulations- und Relaxationsprozesse senkt, bevor die Morphologie durch Vernetzung eingefroren wird. Die Entwicklung der detaillierten Phasenmorphologie und ihr Einfluss auf das hochfrequente viskoelastische Verhalten, das sich z. B. auf die Reibungs-, Bruch- und Verschleißeigenschaften auswirkt, ist derzeit nur unzureichend erforscht, aber von großem technologischen und wissenschaftlichen Interesse.
Ein Hauptziel ist daher die physikalisch motivierte Modellierung und numerische Simulation der thermo-chemisch getriebenen Phasentrennung von gefüllten Elastomerblends mit realistischen, mikroskopischen Eingangsparametern, die aus unabhängigen physikalischen Messungen gewonnen werden. Neben der chemischen Kompatibilität der Polymere und der Füllstoffe soll auch die Auswirkung von mechanischer Belastung auf die Phasendynamik untersucht werden. In Kombination mit ausgefeilten experimentellen Methoden soll die Phasenfeldmodellierung für Diffusion vom Cahn-Hilliard- und Cahn-Larché-Typ angewendet werden. Die lokalen Phasenfeldgleichungen, die am Ende drei Phasen berücksichtigen, müssen in die isogeometrische Analyse implementiert werden, was die Untersuchung komplexer Wechselwirkungen von mehrphasigen Materialien mit unterschiedlichen Materialeigenschaften ermöglicht. Der experimentelle Schwerpunkt liegt auf der Bewertung der thermodynamischen Polymer-Polymer- und Polymer-Füllstoff-Wechselwirkungsparameter, die die Phasenmorphologie und Füllstoffverteilung bestimmen. Für die Simulation der Phasengrenzendynamik soll die kollektive Kettenbeweglichkeit als Eingangsparameter der dynamischen Gleichung vom Typ Cahn-Hilliard geschätzt werden.
Ein zweites Ziel ist die Modellierung und numerische Simulation der hochfrequenten linearen viskoelastischen Reaktion von ungefüllten und gefüllten Elastomermischungen, die auf der ausgeprägten Phasenmorphologie einschließlich der Domänen- und Interphasengröße, der Füllstoffverteilung und der Vernetzungsheterogenitäten beruhen soll. Das nichtlineare Verhalten wird in einem zukünftigen Projekt analysiert.
Die Ergebnisse von Phasenfeldsimulationen sollen mit experimentellen Untersuchungen von Phasenmischungsprozessen verglichen und numerisch ermittelte viskoelastische Moduln mit experimentell erstellten viskoelastischen Masterkurven korreliert werden.
Die Summe der beiden Ziele führt zu einem vollständigen numerischen Verfahren, mit dem es möglich ist, den kompletten Zyklus der Herstellung und Verwendung eines neuen Polymerblends für spätere technische Anwendungen zu simulieren, indem die beteiligten Prozess- und charakteristischen Materialparameter optimiert werden.
Dieser Text wurde mit DeepL übersetzt

Projekt im Forschungsportal ansehen

Entwicklung von FE-Technologien im Bereich der gemischten Formulierung anhand von industriellen Anwendungen
Laufzeit: 02.11.2020 bis 31.10.2023

Ziel der Dissertation ist die Entwicklung, beziehungsweise Weiterentwicklung, von Finite-Elemente-Technologien im Bereich der gemischten Formulierung. Der Fokus liegt hierbei auf der Verschiebung-Druck-Dehnung-Formulierung (u/p/e), da sie gleichzeitig ermöglicht, inkompressibles Materialverhalten zu meistern sowie eine gesteigerte Genauigkeit in der Berechnung der Spannungen und Dehnungen zu ermöglichen.

Projekt im Forschungsportal ansehen

DampedWEA - Innovative Konzepte zur Schwingungs- und Geräuschreduktion getriebeloser Windenergieanlagen
Laufzeit: 01.12.2019 bis 30.04.2023

Das Ziel des Verbundvorhabens DampedWEA ist die Erhöhung der Akzeptanz von Windenergieanlagen (WEA). Dadurch sollen neue Regionen für WEA, insbesondere in der Nähe bewohnter Gebiete, erschlossen werden. Dazu ist eine Verminderung des abgestrahlten Schallpegels erforderlich. In diesem Verbundvorhaben liegt der Fokus auf den tonalen Emissionen, die durch die erfolgreiche Optimierung hinsichtlich aeroakustischer Emissionen immer stärker in den Vordergrund treten und nun ein Problem darstellen. Um diese ausreichend zu reduzieren, kommen innovative Konzepte zur Schwingungs- und Schallreduktion zum Einsatz. Die wesentliche Quelle der tonalen Störgeräusche ist der Generator, da sich die Vibrationen aus dem Generator über die Lager und den Antriebsstrang oder über die Generatortragstruktur in die gesamte Windenergieanlage ausbreiten und schließlich als Schall abgestrahlt werden. Tonale Geräusche sind für die Akzeptanz der Bevölkerung besonders kritisch, da diese als wesentlich lästiger wahrgenommen werden als ein breitbandiges Rauschen.

In diesem Projekt sollen Transmissionspfade untersucht werden, an denen die Erforschung des Schallminderungspotentials erfolgversprechend ist. Darüber hinaus werden viele verschiedene Konzepte erprobt, die teilweise weit über den aktuellen Stand der Technik hinausgehen. Das Projekt wird im Konsortium bestehend aus WRD/Enercon mit den Forschungspartnern DLR, Fraunhofer IFAM, der Otto-von-Guericke-Universität Magdeburg und der Leibniz Universität Hannover durchgeführt.

Projekt im Forschungsportal ansehen

Kopplung fiktiver Gebietsmethoden mit der Randelementemethode für die Analyse akustischer Metamaterialien
Laufzeit: 01.08.2019 bis 30.04.2023

Im Fokus des vorliegenden Projektantrages stehen innovative akustische Metamaterialien. Dabei handelt es sich beispielsweise um akustisch wirksame Schaummaterialien, in denen durch zusätzlich eingebrachte Festkörper mit hoher Steifigkeit lokale Resonanzeffekte erzeugt werden sollen. Auf diesem Weg soll erreicht werden, dass die Dämm- bzw. Dämpfungswirkung dieser Materialien insbesondere im tieffrequenten Bereich signifikant verbessert wird. Allerdings fehlen bisher allgemeine Richtlinien, wie ein akustisches Metamaterial zu gestalten ist, um eine bestmögliche und insbesondere eine breitbandige Wirkung zu erzielen. Das Ziel des beantragten Projektes ist es, ein zuverlässiges und effizientes numerisches Werkzeug zu entwickeln, um in weiterführenden Forschungsarbeiten eine umfassende Analyse der Mechanismen, Einflussfaktoren und Designparameter sowie gezielte Topologieoptimierungen akustischer Metamaterialien durchzuführen zu können. Für die vibroakustischen Analysen soll eine Kopplung der Finiten Zellen Methode (FCM) und der Randelementemethode (BEM) entwickelt werden. Die FCM soll für die strukturdynamischen Berechnungen eingesetzt werden, um die heterogene Struktur der Metamaterialien adäquat und effizient abzubilden. Für die Bewertung verschiedener akustischer Metamaterialien wird der resultierende Schalldruck im umgebenden Luftvolumen sowie die abgestrahlte Schallleistung herangezogen. Die Berechnung der Schallabstrahlung erfolgt mit Hilfe der BEM, da diese insbesondere für die Bewertung im Fernfeld im Vergleich zu volumendiskretisierenden Methoden eine effiziente Möglichkeit zur Berechnung des akustischen Feldes darstellt. Im Rahmen des Projektes sollen auch die Vorteile höherwertiger Ansatzfunktionen ausgenutzt werden. Nach erfolgreicher Implementierung werden kommerzielle FE-basierte Berechnungsprogramme, analytische Vergleichslösungen und experimentelle Untersuchungen genutzt, um die entwickelten Methoden ausführlich zu verifizieren und zu validieren.

Projekt im Forschungsportal ansehen

Optimierung des Designs von piezoelektrischen Motoren im Mesomaßstab für Roboteranwendungen
Laufzeit: 01.01.2021 bis 31.12.2022

Die Robotik hat sich in den letzten Jahrzehnten sprunghaft entwickelt, und für viele Herausforderungen der mittelgroßen bis großen Robotik wurden geeignete Lösungen gefunden. Im Mesomaßstab, d. h. in der Größenordnung von Millimetern bis Zentimetern, wurden jedoch nur wenige dieser Herausforderungen in Angriff genommen, darunter vor allem die Herstellung und der Antrieb. Aufgrund der günstigen Skalierungseigenschaften ist die piezoelektrische Betätigung bei kleinen Maßstäben besser geeignet als die elektromagnetische Betätigung. Piezoelektrische Materialien bieten einen Antrieb, da sie eine Dehnung erzeugen, wenn eine Spannung an sie angelegt wird. Sie erzeugen auch eine Spannung, wenn sie gedehnt werden, was ihnen die Fähigkeit verleiht, als Sensoren oder Aktoren oder als beides gleichzeitig zu arbeiten. Aufgrund ihrer geringen Gesamtverschiebung, der großen Bandbreite und der fehlenden Reibung können sie schnelle und präzise Bewegungen erzeugen.

Das übergeordnete Ziel ist die Optimierung einer neuen Klasse von piezoelektrischen Motoren, die auf einer Reihe von unimorphen Armen (ein piezoelektrisches Material, das mit einem Substrat verbunden ist) basieren. Der kanadische Partner, Assistenzprofessor Dr. Ryan Orszulik, hat kürzlich eine Reihe von Prototypen eines piezoelektrischen Motors entworfen und hergestellt, der einen planaren Rotordurchmesser von 9 mm, einen Stator-Durchmesser von 8 mm und eine integrierte Gesamtdicke des Motors von 0,8 mm aufweist, etwa 200 Milligramm wiegt und in der Lage ist, bidirektionale Bewegungen mit relativ niedrigen Drehzahlen, aber hohem Drehmoment zu erzeugen. Allerdings gibt es noch eine Reihe von Herausforderungen, von denen die wichtigste die Optimierung der Drehmomentdichte des Motors ist. Zu diesem Zweck wird eine numerische Optimierung eingesetzt, die die Massen- und Volumenbeschränkungen berücksichtigt, um wesentlich höhere Drehmomente zu erreichen, ohne die strukturelle Integrität zu beeinträchtigen. Diese multikriterielle Optimierung ist eine sehr anspruchsvolle Aufgabe, vor allem auf so kleinen Skalen. Für Roboteranwendungen im Mesomaßstab ist das Drehmoment von größtem Interesse, da es die Notwendigkeit eines Getriebes mindert, das in diesen kleinen Maßstäben sehr schwierig herzustellen und zu integrieren ist. Der piezoelektrische Motor auf unimorpher Basis, der im Mittelpunkt dieses Projekts steht, ist einfacher zu konstruieren, da er auf nicht standardisierten planaren Fertigungstechniken beruht und nur eine einzige Antriebsquelle mit einer niedrigeren Frequenz benötigt, um ein hohes Drehmoment zu erzeugen. Ziel dieses Forschungsprogramms ist es, neue Fertigungstechniken zu nutzen, um diese piezoelektrischen Motoren zu entwickeln und zu miniaturisieren, sie zu testen und mittels analytischer und Finite-Elemente-Techniken zu optimieren. Durch den Einsatz der entwickelten Konstruktions-, Modellierungs- und Fertigungstechniken wird eine Reihe von Anwendungen angestrebt, darunter autonome Miniaturfahrzeuge und chirurgische Instrumente. Die vielversprechendste mögliche Anwendung, die weitere Möglichkeiten für eine Zusammenarbeit mit dem Satellitendesignlabor der Universität York eröffnen würde, ist die Verwendung dieser Motoren als Aktuatoren für einzelne Kardansteuerungsmoment-Gyroskope in Satelliten der Pico- bis Femto-Klasse.
Dieser Text wurde mit DeepL übersetzt
Dieser Text wurde mit DeepL übersetzt

Projekt im Forschungsportal ansehen

Innovative Simulationsverfahren für die akustische Auslegung von Automobilen
Laufzeit: 01.07.2019 bis 30.09.2022

Dieses Projekt ist eine Kooperation des Lehrstuhls für Mehrkörperdynamik und des Lehrstuhls für Numerische Mechanik mit jeweils einem wissenschaftlichen Mitarbeiter pro Partner. Das Kernziel des Projektes ist die Entwicklung einer praxistauglichen Simulationsmethodik zur Berechnung der Schallemissionen von Motoren und deren psychoakustische Bewertung. Dies ermöglicht es, Auswirkungen von Strukturmodifikationen (Steifigkeit, Massenverteilung) sowie tribologischen Systemparametern (Lagerspiele, Viskosität, Desachsierung und Füllungsgrad) unmittelbar auf die Anregungsmechanismen und die inneren Körperschallwege zurückzuführen und präventiv im Sinne einer akustischen Optimierung durch konstruktive und tribologische Maßnahmen zu bekämpfen. Dieser reine Virtual Engineering Ansatz soll gänzlich ohne reale Prototypen auskommen und somit bereits früh im Motorentwicklungsprozess eine akustische Bewertung ermöglichen. Somit können in Abstimmung mit den Entwicklergruppen angrenzender Themenbereiche konstruktive Maßnahmen zur Verbesserung der akustischen Qualität realisiert werden, ohne andere wichtige Auslegungskriterien, wie Leistung, Schadstoffemission oder Gesamtmasse, negativ zu beeinflussen.
Im Gegensatz hierzu sind passive Maßnahmen zur Bekämpfung von Schallemissionen durch beispielsweise Dämmungen in der Regel kostenintensiv, da sie neben zusätzlichem Material auch zusätzliche Montageschritte erfordern und sich somit auf den Produktionsprozess auswirken. Gleichzeitig steht dies dem Gedanken des Leichtbaus sowie der Verbrauchsreduktion und Umweltfreundlichkeit entgegen und führt zu einem zusätzlichen Bauraumbedarf, der üblicherweise eine sehr knappe Ressource bei der Entwicklung moderner Motoren und Automobile darstellt. Das grundsätzliche Problem dieser heutzutage immer häufiger eingesetzten Dämmmaßnahmen ist deren symptomatischer Ansatz, welcher zwar die Wirkung bekämpft, die Ursachen der akustischen Störung aber außer Acht lässt.
Die ganzheitliche Methodik, die in diesem Projekt im Fokus steht, ermöglicht hingegen direkt die Analyse und Bekämpfung der Ursache der störenden Schallemissionen. Zusätzlich lässt die psychoakustische Bewertung der Schallemission eine Kategorisierung in störende und weniger störende Schallemissionen zu. Dadurch kann das Design gezielt so verändert werden, dass das entstehende Geräusch vom Menschen als angenehmer eingeordnet wird, schließlich kann ein leises Geräusch trotzdem störender empfunden werden als ein lautes.

Projekt im Forschungsportal ansehen

FE-Simulation eines Fahrzeuggelenks der Siemens Mobility GmbH
Laufzeit: 09.11.2021 bis 31.05.2022

Ziel des Projekts ist eine umfangreiche Untersuchung von Elastomerpads, die in einem Fahrzeuggelenk der Siemens Mobility GmbH zum Einsatz kommen. Hierzu werden Finite-Elemente-Analysen durchgeführt, um die Verformungseigenschaften des Gelenks und insbesondere der eingebauten Elastomerpads qualitativ zu bewerten. Zudem sollen experimentelle Untersuchungen an den Elastomerpads von der Firma Siemens Mobility GmbH durchgeführt werden, um die entsprechenden Materialeigenschaften genauer charakterisieren zu können. Hierdurch lassen sich in den FE-Analysen genauere Zusammenhänge zwischen Materialauswahl und Struktureigenschaften bestimmen.

Projekt im Forschungsportal ansehen

Visuelle Komprimierung und Rekonstruktion von patientenspezifischen 3D-Gefäßmodellen zur Anwendung in Simulationsmethoden
Laufzeit: 15.10.2021 bis 14.04.2022

Ziel des Projekts ist eine Methode zur Generierung einfacher Geometrien von Gefäßmodellen, die nur wesentliche Informationen beinhaltet, die zur späteren Rekonstruktion von vereinfachten Simulationsmodellen für die Finite-Elemente- und CFD-Methode genutzt werden können.

Der Fokus hierbei liegt auf der Geometriekomprimierung und -rekonstruktion der Gefäßinnenwand mit Hilfe von parametrisierten NURBS. Durch die NURBS wird die Mittellinie des Gefäßes repräsentiert. Weitere wichtige Kenngrößen (wie z.B. der Gefäßdurchmesser, die Krümmung des Gefäßes und auch die Gefäßdicke) werden parametrisiert an den einzelnen Stützstellen der NURBS abgespeichert. Auf diese Weise wird die Geometrie auf das Wesentlichste reduziert, enthält aber die wichtigsten Informationen um daraus in einem Rekonstruktionsprozess die benötigte 3D-Geometrie des Gefäßmodelles wieder zu erlangen. Diese Geometrie kann im Folgenden für die verschiedensten Softwaresysteme genutzt werden um entsprechende Simulationen durchzuführen. Des Weiteren besteht die Möglichkeit, die Parameter beliebig zu variieren um somit auch neue realitätsnahe Gefäßmodelle für Vergleichssimulationen zu generieren.

Projekt im Forschungsportal ansehen

Kompetenzzentrum eMobility - Forschungsbereich Antriebsstrang: Teilprojekt AR4: "Leichtbau und Akustik von Elektromotoren"
Laufzeit: 01.01.2019 bis 31.12.2021

Das Vorhaben Kompetenzzentrum eMobility greift die strukturbedingten Herausforderungen auf und entwickelt im Rahmen eines neu zu gründenden Kompetenzzentrums Lösungen in wichtigen Teilbereichen, welche die Kooperation zwischen KMU und universitärer Forschung und Lehre deutlich stärken. Das Wissen kann direkt in die betroffene Zulieferindustrie überführt werden und dort dazu beitragen, den Strukturwandel erfolgreich zu managen und neue wirtschaftliche Chancen zu nutzen. Neben der primären Zielsetzung des Aufbaus und Transfers von Kern-Know-How steht vor allem die langfristige Verankerung gewonnener Erkenntnisse in beschäftigungswirksamen wirtschaftlichen Strukturen im Vordergrund.
Ausgehend von einem mehrfach patentierten, weltweit einzigartigen Leichtbaumotorkonzept der OVGU konzentrieren sich die Arbeiten im Forschungsbereich ANTRIEBSSTRANG auf die Weiterentwicklung und prototypische Darstellung der neuen Motortechnologie, deren Integration in den Antriebsstrang sowie deren Betrieb entsprechend gegebener Sicherheits- und Komfortanforderungen (Fahrdynamik). Gleichzeitig bieten sich im Bereich der Grundlagenforschung weitere Innovationsschritte zur Steigerung der Leistungsfähigkeit der Motortechnologie, die in diesem Förderzeitraum erschlossen und in Prototypen umgesetzt werden sollen.

Inhalt des Teilprojekts AR4:
Der abgestrahlte Lärm ist ein zentrales Problem aller elektrischen Maschinen. Dies liegt vor allem daran, dass die typische Schallemission eines Elektromotors sehr tonal und sehr hochfrequent ist und somit einerseits im Bereich der Hörfläche liegt, in dem der Mensch am besten hört, und andererseits als besonders lästig empfunden wird. Aus diesem Grund sollen im Rahmen dieses Teilprojektes Methoden und Lösungen erarbeitet werden, um das akustische Verhalten von elektrischen Maschinen signifikant zu verbessern. Das Ziel besteht nicht nur darin, den Schalldruckpegel zu reduzieren sondern zusätzlich auch ein möglichst unauffälliges beziehungsweise angenehmes Geräusch zu erzielen, weshalb das menschliche Wahrnehmungsvermögen in die Betrachtungen mit einbezogen wird. Für die Entwicklungen werden sowohl modernste kommerzielle Simulationsmethoden sowie eigene Softwareerweiterungen eingesetzt als auch umfangreiche experimentelle Untersuchungen und Hörversuche genutzt. Die experimentellen Untersuchungen umfassen Schwingungsanalysen mittels Laservibrometrie im stehenden und rotierenden System (Derotatormessungen), Messungen des Schalldrucks mit Fernfeldmikrofonen sowie Messungen mit Mikrofonarrays (akustische Kamera) in einer schallarmen Kammer. Das Ziel der experimentellen Untersuchungen besteht darin, einerseits die Simulationsmodelle zu validieren und andererseits den Mehrwert der erarbeiteten Lösungen nachzuweisen. Neben der Akustik steht der Leichtbau im Fokus. Die zu erarbeitenden Konzepte sollen sowohl akustisch unauffällig sein als auch eine minimale Masse besitzen.
Dabei werden unter anderem alternative Materialien (Al-Schaumstrukturen, Metamaterialien, GFK, CFK), innovative Dämpfungsstrategien, neuartige Konstruktionsdesigns (z.B. additive Fertigung), sowie die Einbeziehung von Anbauteilen (z.B. Getriebe) im Sinne zusätzlicher Anregungsquellen untersucht. Um sicherzustellen, dass die strukturelle Integrität trotz der ergriffenen Leichtbaumaßnahmen gewährleistet ist, werden Spannungsanalysen und Festigkeitsberechnungen durchgeführt. Diese beinhalten sowohl statische als auch dynamische Lastfälle. Die dynamischen Spannungsanalysen sind zwingend erforderlich, um den wirkenden Trägheitskräften infolge der zeitlich stark veränderlichen Vorgänge sowie den impulshaften Anregungen während typischer Betriebsszenarien Rechnung zu tragen.

Projekt im Forschungsportal ansehen

Numerische Analyse der Rissausbreitung auf der Grundlage der Phasenfeldmethode in geschweißten Stahlkonstruktionen
Laufzeit: 01.11.2018 bis 31.10.2021

Das Schweißen gilt in vielen Industriebereichen als eines der unverzichtbaren Verfahren zum Fügen. In vielen Konstruktionen sind Schweißnähte als kritische Bereiche bekannt, die zu mechanischen Ausfällen führen. Es gibt eine Reihe von physikalischen Defekten wie Hinterschneidungen, unzureichende Verschmelzung, übermäßige Verformung, Porosität und Risse, die die Schweißqualität beeinträchtigen können. Von diesen Fehlern werden Risse als die schlimmsten angesehen, da selbst ein kleiner Riss wachsen und zu einem Versagen führen kann. Alle Schweißnormen sehen für Risse eine Nulltoleranz vor, während die anderen Fehler innerhalb bestimmter Grenzen toleriert werden. Es gibt drei Voraussetzungen für die Bildung und das Wachstum von Rissen: ein spannungserhöhender Fehler, Zugspannung und ein Material mit geringer Bruchzähigkeit. Mikroskopische Fehlerstellen sind in praktisch allen Schweißnähten vorhanden, einschließlich geometrischer Merkmale und der Schweißnahtchemie, die die lokale Spannung so weit erhöhen können, dass ein Riss entsteht. Der Ingenieur muss sich also mit der Spannungsumgebung und der Zähigkeit befassen: Wenn einer der beiden Faktoren wirksam kontrolliert werden kann, kann verhindert werden, dass Risse entstehen und wachsen. Die Zähigkeit ist ein Maß für den Widerstand gegen das Risswachstum; bei duktilen Werkstoffen kann der Widerstand durch das Abstumpfen der Rissspitze erreicht werden. Wenn jedoch die angewandte Dehnungsrate sehr hoch ist (wie bei der Abkühlung eines Schweißpunktes am Ende des Impulses) und das Spannungsfeld mehrachsig ist, weisen selbst duktile Werkstoffe eine geringe Zähigkeit auf und erzeugen ein schnelles Risswachstum. Harte Werkstoffe, wie z. B. Martensit, der sich beim Abkühlen von Stählen bildet, sind spröde und weisen eine geringe Zähigkeit auf. Ein tiefes Verständnis der Eigenspannungen beim Schweißen, der Mikrostruktur und des mechanischen Verhaltens der WEZ, der multiaxialen Ermüdungsfestigkeit, des Rissfortschrittsverhaltens und der Auswirkungen von Verbesserungstechniken auf geschweißte Strukturen wird zu einer zuverlässigeren Fertigung, einer Minimierung des Gewichts und einer Erhöhung der strukturellen Festigkeit führen.
Die folgenden Ziele dieses Projekts sind:
- Modellierung des Schweißprozesses unter Berücksichtigung der Phasenumwandlungen im Grundwerkstoff und im Schweißgut während des Erwärmungs- und Abkühlungsprozesses.
- Auswirkung der Festigkeit des Schweißmaterials und der Anzahl der Schweißnähte auf die Ermüdungsfestigkeit.
- Einfluss von Wärmebehandlungsverfahren wie Spannungsfreiglühen und Glühhärten auf das Ermüdungsverhalten.
- Entwicklung schädigungsmechanischer Regeln auf der Grundlage numerischer Analysen zur Vorhersage des duktilen Versagens und der Ermüdungsrissentstehung.
- Numerische Modellierung der Ermüdungsrissentstehung und -ausbreitung auf der Grundlage der Phasenfeldtheorie.
- Gewinnung experimenteller Daten durch die Durchführung von Versuchen an einer universellen servohydraulischen Maschine zur Untersuchung des Einflusses multiaxialer Spannungen auf die Dauerfestigkeit und Ermüdungslebensdauer.
- Die Auswirkung von durch Schweißen verursachten Eigenspannungen auf die Ermüdungslebensdauer.
- Untersuchung des HFMI-Prozesses auf Eigenspannungen und Ermüdungsfestigkeit mit Hilfe numerischer und experimenteller Arbeiten.
Dieser Text wurde mit DeepL übersetzt

Projekt im Forschungsportal ansehen

Individualisierte Flow Diverter Behandlung (Belucci) - Entwicklung eines Design-Tools zur computergestützten Auslegung von Individuellen Flow Divertern (IFD)
Laufzeit: 01.09.2018 bis 31.08.2021

Ziel des Projekts BELUCCI ist die Etablierung und Validierung eines neuartigen Ansatzes zur Behandlung intrakranieller Aneurysmen mit Flow Divertern, der auf Basis von patientenspezifischen anatomischen Auswahlparametern eine individuelle und simulationsbasierte Planung, Implantatauswahl/-fertigung und Beratung umfasst. Im Rahmen des Projektes soll ein standardisierter Individualisierungsprozess entwickelt werden, um jedem Patienten das optimale Implantat für das individuelle Aneurysma zur Verfügung stellen zu können und damit die Wirksamkeit und Sicherheit der Prozedur substantiell zu verbessern. Der Ansatz wird im Rahmen des Projektes anhand patientenspezifischer Aneurysmamodelle klinisch evaluiert. Im Teilvorhaben am IFME wird ein computergestütztes Design-Tool zur numerischen Untersuchung und Auslegung von individualisierten Flow Diverter entwickelt.

Projekt im Forschungsportal ansehen

Untersuchungen zur Industrialisierung der Virtualisierung des Meisterbocks und Weiterentwicklung der Simulationskonzepte
Laufzeit: 27.04.2018 bis 30.04.2021

Der Meisterbock dient, primär für Fahrzeugneuanläufe, als Mess- und Analysemittel von Exterieurbauteilen. Dazu gehören u.a. die Blech-Anbauteile wie Kotflügel, Türen, Front- und Heckklappen sowie Seitenteile. Um diese Bauteile und deren Interaktion im Einbauzustand zu bewerten bzw. zu qualifizieren, wird jedes Teil am Meisterbock montiert und wiederholgenau mithilfe des standardisierten Referenz-Punkt-Systems (RPS) ausgerichtet. Das Ziel dieses Projektes besteht darin, diesen Qualifizierungsprozess durch den Einsatz von numerischer Simulation mittels Finite-Elemente-Methode (FEM) zu optimieren, um den Aufwand der physischen Aufbauten zu reduzieren und damit die Effizienz zu steigern.

Projekt im Forschungsportal ansehen

FE-Analyse eines mehrschichtigen Klebesystems
Laufzeit: 01.08.2019 bis 31.12.2019

Ziel des Projekts ist eine umfassende Parameterstudie im Rahmen von Verformungsanalysen eines neuartigen Hochleistungsklebebands. Wesentlicher Punkt ist hierbei die Auswahl eines geeigneten Materialmodells für den Kern und die Haftschichten. In anschließenden FE-Analysen des Stirnzugversuchs werden die Materialparameter und Schichtdicken variiert, um dessen Einfluss auf das Gesamtverhalten sowohl qualitativ als auch quantitativ einzuschätzen.

Projekt im Forschungsportal ansehen

Phase field simulation of crack initiation and propagation in metals under thermomechanical loadings
Laufzeit: 01.05.2016 bis 31.10.2019

Der Bruch unter thermomechanischer Belastung ist ein komplexes Versagensbild, das in Werkstoffen und Bauteilen gravierende Auswirkungen zufolge hat. Die Vorhersage der Bruchverhaltens durch die Rissinitiierung und -ausbreitung in Metallen mithilfe der numerischen Methoden hat immer größere Bedeutung in der technischen Anwendung gewonnen. Die klassischen Theorien aus der Bruchmechanik umfassen nur die Kriterien zur Rissausbreitung, können aber nicht zur Vorhersage der Rissinitiierung verwendet werden. Des Weiteren können keine Aussagen zu gekrümmten Rissen sowie zur Rissverzweigung getroffen werden. In den vergangenen zehn Jahren erfolgte die Übertragung und Weiterentwicklung der Phasenfeldmethode zur Beschreibung der Rissbildung und -ausbreitung. Diese Methode bietet einen leistungsstarken und flexiblen Rahmen für die Untersuchung des Bruchverhaltens von Materialien unter beliebig komplexen thermomechanischen Belastungen. Durch die Definition eines zusätzlichen Freiheitsgrades, des sogenannten Ordnungsparameters, erfolgt die Rissbeschreibung im Modell. Zusätzlich kann die Wärmeleitungsgleichung einbezogen werden, etwa falls thermische Spannungen die Rissausbreitung dominieren. In Betracht kommen hier sowohl das langsame als auch das schlagartige Aufheizen. Analog zur Rissbetrachtung wird dazu das Temperaturfeld als zusätzlicher Freiheitsgrad behandelt. Die daraus resultierenden Gleichungen können mithilfe der Finiten-Elemente-Methode gelöst werden. Das Ziel dieser Doktorarbeit ist die Ausarbeitung eines Modells, welches die mathematische Beziehung zwischen den thermomechanischen Belastungen und der Rissinitiierung sowie der Rissausbreitung bei hohen Temperaturen beschreiben kann. Den Ausgangspunkt des multiphysikalischen Modells bilden die konstitutiven Gleichungen aus der Thermoelastoplastizität, welche mithilfe der Phasenfeldmethode gelöst werden. Die Freiheitsgrade des Modells umfassen dabei die Verschiebung, die Temperatur sowie das Phasenfeld zur Rissbeschreibung.

Projekt im Forschungsportal ansehen

Finite-Elemente-Analyse und Lebensdauervorhersage von gewebeverstärkten Elastomermembranen
Laufzeit: 01.06.2016 bis 31.05.2019

Elastomermembranen werden als Flachmembranen in oszillierenden Pumpen oder für druckbetätigte kurzhubige Stell- und Regelorgane eingesetzt. Im Vergleich zu Metallmembranen sind Elastomermembranen sehr weich und nachgiebig. Zur Verstärkung und Widerstandsfähigkeit von Elastomermembranen werden häufig Gewebe in das Elastomer eingelegt. Die Membranen sind oftmals einer Vielzahl an komplexen und hochbelasteten Schaltzyklen ausgesetzt und müssen aufgrund ihrer wichtigen Funktion optimale Lebensdauereigenschaften erfüllen.

Aufgrund der Komplexität der Elastomermembranen ist eine zuverlässige Abschätzung der mechanischen und der Lebensdauereigenschaften allein auf Basis von Erfahrungswerten kaum möglich. Im Rahmen dieses Projektes soll mithilfe der Finite-Elemente-Methode (FEM) ein Simulationswerkzeug entwickelt werden, das zur realitätsnahen Verformungs- und Lebensdaueranalyse von gewebeverstärkten Elastomermembranen eingesetzt werden kann.

Projekt im Forschungsportal ansehen

Eine gemischte Mehrfeld-Modellierung von gradientenbasierten Problemen in der Festkörpermechanik
Laufzeit: 01.10.2014 bis 31.03.2019

Die Modellierung von Phasenfeldern und Größeneffekten in Festkörpern, wie z.B. die Breite von Scherbändern oder die Abhängigkeit der Korngröße von plastischen Vorgängen in Polykristallen, bedingt einen unkonventionellen Kontinuumsansatz mit integrierten Längenskalen. Mit dem zunehmenden Trend zur Miniaturisierung und zu nanotechnologischen Anwendungen wird diese Art der Modellierung zukünftig einen hohen Stellenwert einnehmen.
Die gemischte Mehrfeld-Modellierung von gradientenbasierten Problemen ist eine kürzlich entwickelte thermomechanisch konstistente Methode, die hierfür sehr gut geeignet ist. Die Grundidee ist die Erweiterung der internen Variablen auf mikromechanische Größen und die Entwicklung des makro- und mikromechanischen Gleichgewichts in geschlossener Form.

Projekt im Forschungsportal ansehen

Entwicklung eines neuartigen Stents-Designs zur gezielten Gefäßdeformation zur Reduzierung des Bluteintrags ins Aneurysma
Laufzeit: 01.09.2018 bis 31.01.2019

Seit mehreren Jahren wird die Todesursachenstatistik in Deutschland von Herz-/ Kreislauf-Erkrankungen dominiert. Laut statistischem Bundesamt waren diese im Jahr 2015 für ca. 39 % aller Todesfälle verantwortlich. Hierzu zählt u.a. der Schlaganfall, welcher durch eine Subarachnoidalblutung hervorgerufen werden kann. Dabei gelangt Blut in den, das Gehirn umgebenden, Subarachnoidalraum. Überwiegend werden diese Blutungen durch die Ruptur von zerebralen Aneurysmen verursacht. Dies sind ballonartige Erweiterungen arterieller Blutgefäße, welche ca. 2-6 % der westlichen Bevölkerung im Laufe ihres Lebens entwickeln. Eine Ruptur erfahren schließlich ca. 10 von 100 000 Personen pro Jahr.
Diverse Maßnahmen sollen eine solche Ruptur verhindern. Durch chirurgische (Clipping) oder endovaskuläre (Coiling, Ballonangioplastie, Stenting, Platzierung von Flow-Divertern oder WEB-Devices) Eingriffe wird der Bluteintrag ins Aneurysma reduziert. Dies zielt auf die Bildung von Thromben ab, welche einen natürlichen Verschluss des Gefäßes hervorrufen. Diese Maßnahmen sind weder risikolos noch zwangsläufig erfolgreich. Das motiviert die Entwicklung von neuen sowie die beständige Verbesserung etablierter Verfahren.
Ziel des Projektes ist die Entwicklung eines Stents mit neuartigem Wirkprinzip zur therapeutischen Deformation der Trägergefäße von intrakraniellen Aneurysmen. Infolge der gezielten Leitung des Blutflusses stellt sich eine günstigere Hämodynamik ein und der Bluteintrag ins Aneurysmainnere wird reduziert. Dies wiederum erhöht die Verweilzeit des Blutes im Aneurysma und fördert die natürliche Thrombosierung, wodurch das Aneurysma  verschlossen wird.
Dies ist ein völlig neuartiges Konzept in a) der Behandlungsmethode und b) dem dafür notwendigen Stent-Design. Deshalb sollen in diesem Rahmen die simulativen Methoden entwickelt werden, um die individuelle erwartete Wirksamkeit dieses Konzeptes zu bestimmen.

Projekt im Forschungsportal ansehen

FE-Analyse einer neu konzipierten Impact-Schutz-Kupplung
Laufzeit: 01.10.2018 bis 31.12.2018

Im Rahmen des Projektes werden FE-Simulationen zu einer neu konzipierten Impact-Schutz-Kupplung unter mechanischen und thermischen Belastungen realisiert. Diese Kupplung besteht aus einer modifizierten Welle-Nabe-Verbindung, die zur Übertragung eines konstanten maximalen Drehmoments über mehreren Zyklen genutzt werden soll.
Hierzu sollen Validierungssimulationen mittels der Finite-Elemente-Methode (FEM) für einen vereinfachten Prüfaufbau umgesetzt werden. Dieser axiale Prüfaufbau besteht aus zwei identischen Probekörpern, die an einer Kreisringfläche axial mit einer Anpresskraft belastet und dann gegeneinander verdreht werden.
Es werden umfangreiche Material- und Systemkennwerte sowie die praxisnahen Randbedingungen berücksichtigt, um einen angemessenen Abgleich zwischen vorhandenen Experimenten und FE-Simulationen zu ermöglichen. Zudem werden im Anschluss Parameterstudien durchgeführt, um deren Einfluss auf die Systemantwort zu verstehen. Zu diesen Parametern gehören z.B. die Schichtdicke und der Reibkennwert. Neben der Variation des Anpressdrucks werden auch Simulationen unter veränderten Temperaturen berücksichtigt.

Projekt im Forschungsportal ansehen

Virtuelle Simulation des Verformungsverhaltens von NiTi-Stents in der minimalinvasiven Gefäßtherapie
Laufzeit: 16.09.2016 bis 15.09.2018

Kardiovaskuläre Erkrankungen sind in den westlichen Ländern heutzutage die Haupttodesursache. Es gibt verschiedene Behandlungsmethoden für solche Pathologien, aber der zukunftsweisende Trend ist die perkutane minimalinvasive Therapie. Hierbei werden Hightech Endoprothesen über einen endoluminalen Pfad in den pathologischen Bereich eingebracht. Mit einer der bekanntesten Familie solcher Implantate sind Gefäßstützen, oder auch Stents genannt. Sie sind durch ihre komplexe Geometrie und der nicht-trivialen Materialeigenschaften gekennzeichnet. Der sichere Einsatz dieser Stents bedarf einer kontinuierlichen technologischen Verbesserung im Hinblick auf Material, Design und Einsatzbedingungen, um eine sichere Implantation, eine effiziente Medikamentenfreisetzung und ein optimales Langzeitverhalten zu erreichen. Zudem erfährt das Konzept der prädiktiven Medizin, d.h. die Vorhersage von alternativen Behandlungsmethoden am individuellen Patienten, einen immer größer werdenden Stellenwert, was nicht ohne robuste und kosteneffiziente Simulationsmethoden möglich ist.
Mit diesem Projekt soll ein Beitrag zur effizienten Simulation des Verformungsverhaltens von Carotis-Stents in der Halsschlagader geleistet werden. Langfristiges Ziel ist die Echtzeit-Simulation des Stentverhaltens während der synchronen Operation am Menschen, so dass verschiedene Vorgänge kurz vor der realen Platzierung virtuell erprobt und bezüglich des individuellen Patienten optimal durchgeführt werden können.

Projekt im Forschungsportal ansehen

Finite-Elemente-Simulation des Verformungsverhaltens von Strukturen aus Formgedächtnislegierungen
Laufzeit: 01.05.2015 bis 30.04.2018

Formgedächtnislegierungen (SMA) können infolge von Änderungen der Temperatur und des Spannungszustands eine Phasenumwandlung zwischen einer hochgeordneten Austenitphase und einer niedriggeordneten Martensitphase erfahren. Folglich weisen SMA mehrere makroskopische Phänomene auf, die bei herkömmlichen Werkstoffen nicht vorhanden sind. Zwei wichtige Phänomene sind der Formgedächtniseffekt (SME) und der pseudoelastische Effekt (PE). Diese einzigartigen Eigenschaften von SMA haben vor allem in der Medizintechnik wichtige Anwendungsgebiete gefunden. Der zunehmende Einsatz in kommerziell wertvollen Anwendungen hat ein lebhaftes Interesse an der Entwicklung von genauen konstitutiven Modellen zur Beschreibung des thermomechanischen Verhaltens von SMA geweckt. In diesem Projekt wird ein thermomechanisches 3D-Modell für SMA, das sowohl den Effekt der Pseudoelastizität als auch den Formgedächtniseffekt berücksichtigt, im Hinblick auf das Ermüdungsverhalten und die Rissbeständigkeit erweitert.
Dieser Text wurde mit DeepL übersetzt

Projekt im Forschungsportal ansehen

Untersuchung und konzeptionelle Beschreibung der Lebensdauer von Gummiwerkstoffen unter mehrachsigen Belastungszuständen
Laufzeit: 01.06.2013 bis 31.05.2017

In diesem Projekt wird die tiefgreifende Untersuchung zur Lebensdauer von technischen Gummiwerkstoffen unter mehrachsigen Belastungszuständen und im Speziellen unter Scherung mit rotierenden Achsen durchgeführt.

Neben experimentellen Untersuchungen wird schon in der Frühphase des Projekts ein theoretisches Konzept zur Lebensdauervorhersage entwickelt, das in Anlehnung an die Scherung mit rotierenden Achsen einen viel weiteren Bereich als bisherige konventionelle Konzepte abdecken kann.

Das Konzept soll mittels weiterer zielführender Versuche zur beidseitigen Scherung, Scherung mit rotierenden Achsen sowie unter einseitiger Scherung und Zug validiert werden. Hierbei wird auch die Belastungsamplitude variiert.

Projekt im Forschungsportal ansehen

THEVE - A new physically motivated thermoviscoelastic model for filled elastomers to investigate the material response under dynamic loading conditions on rolling tires
Laufzeit: 15.02.2013 bis 14.01.2017

Ziel des von der Luxembourgischen Forschungsgesellschaft (FNR) geförderten Projekts ist die numerische Untersuchung der Effizienz von speziellen Elastomerwerkstoffen im Hinblick auf dessen Rollwiderstandseigenschaften. Hierzu wird das so genannte Dynamische Flockulationsmodell (DFM) eingesetzt und weiterentwickelt. Dieses physikalisch motivierte Materialmodell kann das inelastische Materialverhalten von gefüllten Elastomeren unter zyklischer Belastungshistorie (wie z.B. Mullins-Effekt und Spannungs-Dehnungs-Hysterese) in einem großen Dehnungsbereich realitätsnah darstellen. Die Erweiterung des Materialmodells auf zeit- und temperaturabhängige Phänomene ermöglicht eine genauere Abbildung der dissipativen Eigenschaften des Materials unter dynamischen Belastungen, wie sie beim rollenden Reifen auftreten. Schließlich wird mithilfe des Materialmodells eine Korrelation zwischen der auftretenden Dissipation und dem Rollwiderstand hergestellt, die zur gezielten Materialauswahl für Reifenlaufflächen genutzt werden kann.

Projekt im Forschungsportal ansehen

FE-Simulation von Hochleistungsklebebändern
Laufzeit: 01.01.2012 bis 31.12.2016

Doppelseitige Klebebänder zeichnen sich durch ihre viskoelastischen sowie besonders guten Hafteigenschaften auf einer Vielzahl von Untergründen aus. Sie bestehen entweder als ein Mehrschichtsystem aus einer dünnen Klebeschicht auf der Ober- und Unterseite aufgetragen auf eine innere Trägerschicht oder es wird ein einziges Material eingesetzt, das sowohl als Klebeschicht als auch als Trägermaterial dient.
In diesem Forschungsprojekt wird ein Simulations-Tool entwickelt, das unter Berücksichtigung der komplexen Werkstoffcharakteristiken, wie z.B. starke Nichtlinearität und Viskoelastizität des Materials, eine bessere Abschätzung der Einsatzgrenzen ermöglicht. Mithilfe dieses Tools können auf einfache Weise die Modellparameter bezüglich Materialvariation, zeitabhängige Änderungen der äußeren Randbedingungen und Langzeitverhalten angepasst werden und realitätsnahe Voraussagen über das komplexe Strukturverhalten von ein- und mehrschichtigen Hoch­leistungs­klebe­bändern gemacht werden.

Projekt im Forschungsportal ansehen

ParaFit - Parameteranpassung anhand bauteilnaher Probekörper
Laufzeit: 01.10.2013 bis 30.09.2016

Die Qualität und Aussagekraft von FEM-Simulationen technischer Bauteile wird durch die Eignung sowohl der verwendeten Stoffgesetze als auch der zugeordneten Materialparameter limitiert.
 
Ein für die industrielle Anwendung geeignetes Materialmodell ist nicht unbedingt eine möglichst genaue und vollständige Nachbildung des realen Werkstoffverhaltens. Vielmehr bedingt die Praxistauglichkeit eines Stoffgesetzes einen ausgewogenen Kompromiss zwischen problemspezifischen Anforderungen an Geltungsbereich, Genauigkeit und Eigenschaftskombination der Materialbeschreibung auf der einen Seite und wirtschaftlichen Beschränkungen bezüglich erforderlicher Computerkapazitäten und Berechnungszeiten auf der anderen Seite.

Die Anpassung der entsprechenden Materialparameter wird in den häufigsten Fällen mithilfe von homogenen Versuchen an Laborprüfkörpern realisiert. Allerdings haben technische Bauteile und zugehörige Laborprüfkörper in der Regel sehr verschiedene Geometrien und werden zudem häufig in unterschiedlicher Weise hergestellt. Dies bedingt in vielen Fällen gravierende Abweichungen im Materialverhalten. Bauteilsimulationen mit Stoffgesetzen, die an Messungen an solchen Prüfkörpern angepasst wurden, sind somit bereits von vornherein fehlerbehaftet.

Kernziel des Forschungsvorhabens ist die Realisierung eines für die industrielle Nutzung geeigneten Computerprogramms zur Identifikation von Stoffgesetzparametern, das die effiziente Verwendung von Messdaten aus Versuchen an bauteilnahen Prüfkörpern mit inhomogen verteilten Spannungen und Verzerrungen ermöglicht. Auf diesem Weg werden die oben genannten Nachteile der Beschränkung auf homogene Referenzmessungen vermieden, und es eröffnet sich die Möglichkeit, spezifische Besonderheiten von Produktgruppen und Belastungsprozessen bei der Anpassung der Stoffgesetze zu berücksichtigen. Die mit diesem Ansatz unweigerlich einhergehende Erhöhung der Rechenzeiten ist beim Leistungsumfang heutiger Standardcomputer von untergeordneter Bedeutung, sofern das Potential effizienter Algorithmen und geschickter Programmierung voll ausgeschöpft wird.

Projekt im Forschungsportal ansehen

Finite-Elemente-Analyse zur Montage eines Elastomer-Rollbalgs
Laufzeit: 01.06.2016 bis 31.08.2016

Im Rahmen dieses Projekts wird eine fundierte Untersuchung des Verformungsverhaltens eines Rollbalgs unter praxisnahen Belastungszuständen realisiert. Während des Einbaus und dem Betrieb erfährt der Rollbalg große Verformungen, die unter anderem zu komplexen Kontaktbedingungen führen können. Hierbei kann es unter Betriebsbedingungen zum ungewünschten Frühausfall des Rollbalgs kommen. Da der Rollbalg aus gefülltem Elastomer besteht, muss ein erweitertes Materialmodell genutzt werden, das die inelastischen Eigenschaften (wie z.B. Materialerweichung, bleibende Dehnungen und Be- und Entlastungshysterese) abbilden kann.

Projekt im Forschungsportal ansehen

DIK-Projekt: Simulation von Kontaktkräften unter Berücksichtigung von Adhäsion, nachgiebigen Oberflächenrauigkeiten und Gummimaterialien mit Gleichgewichtshysterese
Laufzeit: 01.10.2012 bis 30.09.2015

Mit diesem von der Deutschen Kautschukgesellschaft (DKG) geförderten Projekt soll das Entwicklungspotential von Gummibauteilen, deren Funktion wesentlich von Reibungseigenschaften abhängt, vergrößert werden. Hierzu soll auf der Basis von Computersimulationen das Verständnis von Reibungsprozessen unter Beteiligung einer Gummioberfläche verbessert werden. Dabei sollen insbesondere adhäsive Kraftanteile in ihrer Bedeutung neu beurteilt und im Zusammenhang mit nachgiebigen Kontaktflächenrauigkeiten detailliert erforscht werden. Für die Simulationen wird ein Modell eines repräsentativen Ausschnitts einer Kontaktpaarung mit realitätsnahen Oberflächenrauigkeiten erstellt. Unter Anpressdruck soll die Vergrößerung der wirksamen Kontaktfläche durch Verformung der Rauigkeiten verfolgt werden. Anschließend wird eine Belastung tangential zur Kontaktfläche simuliert. In beiden Phasen werden die Kraftanteile aus elastischer Verformung, Adhäsion und dissipativen Effekten bilanziert.

Projekt im Forschungsportal ansehen

DIK-Projekt: Finite-Elemente-Simulation des dynamischen Verformungsverhaltens von geschäumten Elastomeren
Laufzeit: 01.10.2013 bis 30.04.2014

Am Institut wurde ein Materialmodell zur Beschreibung des mechanischen Verhaltens von geschäumten Elastomeren entwickelt. Dieses Modell kann das äußerst komplexe Materialverhalten von geschäumten Elastomeren unter beliebiger mechanischer Beanspruchung realitätsnah abbilden. Hierbei wird über einen Homogenisierungsansatz ein funktionaler Zusammenhang zwischen den mechanischen Eigenschaften und dem Porengehalt berücksichtigt. Das  Materialmodell ist bisher für quasistatische Belastungszustände entwickelt worden, d.h. zeit- bzw. frequenzabhängige Eigenschaften, sowohl der Elastomermatrix als auch der Porenstruktur, können noch nicht abgebildet werden. Ziel dieses Projekts ist die Erweiterung des Modells bezüglich der zeitabhängigen Eigenschaften, die vor allem bei hochfrequenten Belastungen durch den spontanen Druckaufbau innerhalb der Porenstruktur auftreten können. Das Modell wird zudem in ein geeignetes Finite-Elemente-Programm implementiert, so dass es für die FE-Simulation von komplexeren, mehrdimensionalen Belastungszuständen genutzt werden kann.

Projekt im Forschungsportal ansehen

DIK-Projekt: Entwicklung eines Materialmodells zur thermo-mechanischen Beschreibung von thermoplastischen Elastomeren
Laufzeit: 01.10.2010 bis 30.09.2013

In dem von der Deutschen Kautschukgesellschaft geförderten Projekt wird ein neues Materialmodell für thermoplastische Elastomere entwickelt, das die mechanischen Eigenschaften von TPEs, wie z.B. Inelastizität, Viskoelastizität und Temperaturabhängigkeit der Materialparameter, realitätsnah abbilden kann. Das Modell beruht auf einer Homogenisierungsmethode in der explizit der Volumengehalt der elastomeren und thermoplastischen Phase einfließt. Das Modell wird in die Finite-Elemente-Methode implementiert und kann somit in Zukunft für die realitätsnahe Simulation des Strukturverhaltens von TPE-Bauteilen benutzt werden.

Projekt im Forschungsportal ansehen

Letzte Änderung: 08.06.2023 -
Ansprechpartner: Webmaster