Projekte

Abgeschlossene Projekte

Randwertprobleme für Willmoreflächen - Analysis, Numerik und numerische Analysis
Laufzeit: 01.10.2008 bis 31.03.2013

Die Willmoregleichung, d.h. die Euler-Lagrange-Gleichung zum Willmorefunktional, zählt zu den wichtigen und anspruchsvollen Herausforderungen der nichtlinearen Analysis: Sie ist quasilinear und von vierter Ordnung; viele aus der Theorie von Gleichungen und Systemen zweiter Ordnung her wohlbekannten Methoden versagen zu einem großen Teil. Dennoch konnten in letzter Zeit einige bemerkenswerte Fortschritte u.a. von L. Simon, E. Kuwert, R. Schätzle, T. Riviere u.a. erzielt werden. Bislang wurde das Willmorefunktional meist nur auf unberandeten kompakten Mannigfaltigkeiten studiert, da hier großer Gewinn aus globalen differentialgeometrischen Eigenschaften gezogen werden konnte. Hinsichtlich Randwertproblemen liegen erst ganz wenige Resultate vor: Die ohnehin schwierige Gewinnung von Kompaktheit / Abschätzungen wird hier nochmals komplizierter. Wir wollen mit numerischen Studien und analytischen Untersuchungen von Randwertproblemen in symmetrischen Prototypsituationen beginnen und damit eine Richtung aufzeigen, unter welchen Bedingungen zu erwarten sein wird, mit a-priori-beschränkten Minimalfolgen arbeiten und a-priori-beschränkte klassische Lösungen erhalten zu können. Es soll auch das allgemeinere und nicht mehr konform invariante Helfrich-Funktional studiert werden und mit der Analysis echt zweidimensionaler Randwertprobleme begonnen werden.  Darüber hinaus sollen numerische Algorithmen und Konvergenzsätze in allgemeineren Situation entwickelt werden, z.B. für Graphen über zweidimensionalen Gebieten. Diesbezügliche Ergebnisse könnten Entwicklungen hin zu parametrisch beschriebenen Flächen vorbereiten. Im vorliegenden Projekt werden Analysis, numerische Analysis und Numerik gleichberechtigt und eng miteinander verzahnt bearbeitet. Die Analysis profitiert von den numerischen Studien, während die Numerik ganz wesentlich auf die analytischen Vorarbeiten aufbaut. Die numerische Analysis schlie\ss lich setzt sowohl auf den numerischen als auch den analytischen Vorarbeiten auf und wirkt umgekehrt hierauf zurück.

Projekt im Forschungsportal ansehen

Randwertprobleme für Willmoreflächen - Analysis, Numerik und numerische Analysis
Laufzeit: 01.10.2008 bis 31.03.2013

Die Willmoregleichung, d.h. die Euler-Lagrange-Gleichung zum Willmorefunktional, zählt zu den wichtigen und anspruchsvollen Herausforderungen der nichtlinearen Analysis: Sie ist quasilinear und von vierter Ordnung; viele aus der Theorie von Gleichungen und Systemen zweiter Ordnung her wohlbekannten Methoden versagen zu einem großen Teil. Dennoch konnten in letzter Zeit einige bemerkenswerte Fortschritte u.a. von L. Simon, E. Kuwert, R. Schätzle, T. Riviere u.a. erzielt werden. Bislang wurde das Willmorefunktional meist nur auf unberandeten kompakten Mannigfaltigkeiten studiert, da hier großer Gewinn aus globalen differentialgeometrischen Eigenschaften gezogen werden konnte. Hinsichtlich Randwertproblemen liegen erst ganz wenige Resultate vor: Die ohnehin schwierige Gewinnung von Kompaktheit / Abschätzungen wird hier nochmals komplizierter. Wir wollen mit numerischen Studien und analytischen Untersuchungen von Randwertproblemen in symmetrischen Prototypsituationen beginnen und damit eine Richtung aufzeigen, unter welchen Bedingungen zu erwarten sein wird, mit a-priori-beschränkten Minimalfolgen arbeiten und a-priori-beschränkte klassische Lösungen erhalten zu können. Es soll auch das allgemeinere und nicht mehr konform invariante Helfrich-Funktional studiert werden und mit der Analysis echt zweidimensionaler Randwertprobleme begonnen werden.  Darüber hinaus sollen numerische Algorithmen und Konvergenzsätze in allgemeineren Situation entwickelt werden, z.B. für Graphen über zweidimensionalen Gebieten. Diesbezügliche Ergebnisse könnten Entwicklungen hin zu parametrisch beschriebenen Flächen vorbereiten. Im vorliegenden Projekt werden Analysis, numerische Analysis und Numerik gleichberechtigt und eng miteinander verzahnt bearbeitet. Die Analysis profitiert von den numerischen Studien, während die Numerik ganz wesentlich auf die analytischen Vorarbeiten aufbaut. Die numerische Analysis schlie\ss lich setzt sowohl auf den numerischen als auch den analytischen Vorarbeiten auf und wirkt umgekehrt hierauf zurück.

Projekt im Forschungsportal ansehen

Randwertprobleme für Willmoreflächen - Analysis, Numerik und numerische Analysis
Laufzeit: 01.10.2008 bis 31.03.2013

Die Willmoregleichung, d.h. die Euler-Lagrange-Gleichung zum Willmorefunktional, zählt zu den wichtigen und anspruchsvollen Herausforderungen der nichtlinearen Analysis: Sie ist quasilinear und von vierter Ordnung; viele aus der Theorie von Gleichungen und Systemen zweiter Ordnung her wohlbekannten Methoden versagen zu einem großen Teil. Dennoch konnten in letzter Zeit einige bemerkenswerte Fortschritte u.a. von L. Simon, E. Kuwert, R. Schätzle, T. Riviere u.a. erzielt werden. Bislang wurde das Willmorefunktional meist nur auf unberandeten kompakten Mannigfaltigkeiten studiert, da hier großer Gewinn aus globalen differentialgeometrischen Eigenschaften gezogen werden konnte. Hinsichtlich Randwertproblemen liegen erst ganz wenige Resultate vor: Die ohnehin schwierige Gewinnung von Kompaktheit / Abschätzungen wird hier nochmals komplizierter. Wir wollen mit numerischen Studien und analytischen Untersuchungen von Randwertproblemen in symmetrischen Prototypsituationen beginnen und damit eine Richtung aufzeigen, unter welchen Bedingungen zu erwarten sein wird, mit a-priori-beschränkten Minimalfolgen arbeiten und a-priori-beschränkte klassische Lösungen erhalten zu können. Es soll auch das allgemeinere und nicht mehr konform invariante Helfrich-Funktional studiert werden und mit der Analysis echt zweidimensionaler Randwertprobleme begonnen werden.  Darüber hinaus sollen numerische Algorithmen und Konvergenzsätze in allgemeineren Situation entwickelt werden, z.B. für Graphen über zweidimensionalen Gebieten. Diesbezügliche Ergebnisse könnten Entwicklungen hin zu parametrisch beschriebenen Flächen vorbereiten. Im vorliegenden Projekt werden Analysis, numerische Analysis und Numerik gleichberechtigt und eng miteinander verzahnt bearbeitet. Die Analysis profitiert von den numerischen Studien, während die Numerik ganz wesentlich auf die analytischen Vorarbeiten aufbaut. Die numerische Analysis schlie\ss lich setzt sowohl auf den numerischen als auch den analytischen Vorarbeiten auf und wirkt umgekehrt hierauf zurück.

Projekt im Forschungsportal ansehen

Galerkin-Verfahren fuer Kontrollprobleme mit partiellen Differentialgleichungen
Laufzeit: 01.10.2009 bis 30.09.2012

Das Projekt befasst sich mit der Entwicklung und Analyse von Diskretisierungen von Optimalsteuerungsproblemen, in denen die Zustandsgleichungen durch parabolische partielle Differentialgleichungen gegeben sind.

Projekt im Forschungsportal ansehen

Galerkin-Verfahren fuer Kontrollprobleme mit partiellen Differentialgleichungen
Laufzeit: 01.07.2006 bis 30.06.2008

Das Projekt befasst sich mit der Entwicklung und Analyse von Diskretisierungen von Problemenim Bereich der optimalen Steuerung partieller Differentialgleichungen unter Kontroll-und Zustands-schranken.

Projekt im Forschungsportal ansehen

Letzte Änderung: 08.06.2023 - Ansprechpartner: Webmaster