On Scheduling Problems with Forbidden Stack-Overflows

Frank Werner

Otto-von-Guericke Universität Magdeburg

Evgeny Gafarov

Institute of Control Sciences of the Russian Academy of Sciences

Definition

n jobs	j = 1,2,,n
m stacks	k = 1,2,,m

 p_j processing time of job j d_j due date of job j h_{jk} volume of sub-products, which is put tostack k after the completion of job j.

 H_k^{max} capacity of stack k

A stack becomes less filled by 1 unit within a time unit.

Stack overflows are forbidden!

Scheduling problems to minimize makespan

 $C_{max}(\pi)$ – maximal completion time of the jobs in the schedule π

 $H2/|C_{max}$ – scheduling problem with m=2 stacks to minimize the makespan

Lemma 1: Problem $H2/|C_{max}$ is NP-hard in the strong sense.

Reduction from the 3-Partition problem:

 $3\overline{m}$ numbers b_j in the 3-Partition problem $3\overline{m} + \overline{m} + 1$ jobs $h_{j1} = b_j$ and $h_{j2} = 0$ for the first $3\overline{m}$ jobs $h_{j1} = B = H_1^{max}$ and $h_{j2} = 2B = H_2^{max}$ for the next $3\overline{m} + 1$ jobs

Scheduling problems to minimize the makespan

Lemma 1: Problem $H2//C_{max}$ is NP-hard in the strong sense.

 $C_j = (j-n-1)2B, \ j = n+1, n+2, \dots, n+\overline{m}+1$

Jobs from N_j are processed in the interval $[C_j, C_j + 2B], j = n+1, n+2, ..., n+\overline{m}+1$

 $p_{j} = 0$

Scheduling problems to minimize the makespan

Lemma 2: Problem $H2/h_{jk}=1/C_{max}$ is NP-hard.

Reduction from the Graph coloring problem:

For each vertex $v \in V$, we define a job j_{v} .

For each arc (v,u) \in E, we define a stack $k_{v,u}$

$$Hk_{v,u}^{\max} = 1$$
$$h_{j_v k_{v,u}} = h_{j_u k_{u,v}} = 1$$

Problem $Hm|h_{jk}=1|C_{max}$ is equivalent to:

- a special case of the Resource-Constrained Project Scheduling Problem with equallength jobs and resource capacities equal to 1 without precedence relations;
- a special case of the School Timetabling Problem.

Scheduling problems to minimize the makespan

Scheduling problems to minimize total tardiness

 $T_j(\pi) = max\{0, C_j(\pi) - d_j\}$ – tardiness of job j in the schedule π .

 $H1/\sum_{i}$ - scheduling problem with m=1 stack to minimize total tardiness.

Lemma 4: Problem $H1/\sum_{j=1}^{j}$ is NP-hard.

Reduction from the NP-hard special case of problem $1/\sum_{i}$.

Scheduling problems to minimize total tardiness

$$\begin{cases} p_1 > p_2 > \dots > p_{2n+1}, \\ d_1 < d_2 < \dots < d_{2n+1}, \\ d_{2n+1} - d_1 < p_{2n+1}, \\ p_{2n+1} = M = n^3 b, \\ p_{2n} = p_{2n+1} + b = a_{2n}, \\ p_{2i} = p_{2i+2} + b = a_{2i}, \ i = n - 1, \dots, 1, \\ p_{2i-1} = p_{2i} + \delta_i = a_{2i-1}, \ i = n, \dots, 1, \\ d_{2n+1} = \sum_{\substack{i:=1 \\ i:=1}}^n p_{2i} + p_{2n+1} + \frac{1}{2}\delta, \\ d_{2n} = d_{2n+1} - \delta, \\ d_{2i} = d_{2i+2} - (n-i)b + \delta, \ i = n - 1, \dots, 1, \\ d_{2i-1} = d_{2i} - (n-i)\delta_i - \varepsilon \delta_i, \ i = n, \dots, 1, \end{cases}$$

where $\delta_i \in Z^+, i = 1, 2, \ldots, n$, are integer numbers,

$$\delta = \sum_{i=1}^{n} \delta_i, \qquad b = n^2 \delta$$

and

$$0 < \varepsilon < \frac{\min_i \delta_i}{\max_i \delta_i}.$$

we add two jobs 2n+2 and 2n+3, where

$$p_{2n+2} = p_{2n+1}, \qquad d_{2n+2} = 0, p_{2n+3} = p_1 - p_{2n+1} < p_{2n+1} \qquad d_{2n+3} = 0$$

Thanks for your attention

Frank Werner

Otto-von-Guericke Universität Magdeburg

Evgeny Gafarov

Institute of Control Sciences of the Russian Academy of Sciences

