On Scheduling Problems with Forbidden Stack-Overflows

Frank Werner
Otto-von-Guericke
Universität Magdeburg
Evgeny Gafarov

Definition

n jobs
m stacks

$$
\begin{aligned}
& j=1,2, \ldots, n \\
& k=1,2, \ldots, m
\end{aligned}
$$

$p_{j} \quad$ processing time of job j
$d_{j} \quad$ due date of job j
$h_{j k} \quad$ volume of sub-products, which is put to stack k after the completion of job j.
$H_{k}^{\max }$ capacity of stack k

A stack becomes less filled by 1 unit within a time unit.

Stack overflows are forbidden!

Scheduling problems to minimize makespan

$C_{\max }(\pi)$ - maximal completion time of the jobs in the schedule π
$\mathrm{H} 2 \mid / C_{\max }$ - scheduling problem with $m=2$ stacks to minimize the makespan

Lemma 1: Problem H 2 | / $\mathrm{C}_{\text {max }}$ is NP-hard in the strong sense.

Reduction from the 3-Partition problem:
$3 \bar{m}$

$$
3 \bar{m}+\bar{m}+1
$$

$h_{j 1}=b_{j}$ and $h_{j 2}=0$
$h_{j 1}=B=H_{1}{ }^{\text {max }}$ and $h_{j 2}=2 B=H_{2}^{\max } \quad$ for the next $3 \bar{m}+1$ jobs
numbers b_{j} in the 3-Partition problem
jobs
for the first $3 \bar{m}$ jobs

Scheduling problems to minimize the makespan

Lemma 1: Problem H 2 / / $\mathrm{C}_{\text {max }}$ is NP-hard in the strong sense.

$C_{j}=(j-n-1) 2 B, j=n+1, n+2, \ldots, n+\bar{m}+1$
Jobs from N_{j} are processed in the interval $\left[C_{j}, C_{j}+2 B\right], j=n+1, n+2, \ldots, n+\bar{m}+1$
$p_{j}=0$

Scheduling problems to minimize the makespan

Lemma 2: Problem $\mathrm{H} 2 / h_{j k}=1 / C_{\text {max }}$ is NP-hard.

Reduction from the Graph coloring problem:

For each vertex $v \in V$, we define a job j_{v}.

For each $\operatorname{arc}(v, u) \in E$, we define a stack $k_{v, u}$
$H k_{v, u}{ }^{\text {max }}=1$
$h_{j_{v} k_{v, u}}=h_{j_{u} k_{u, v}}=1$

Problem $\mathrm{Hm}\left|\mathrm{h}_{\mathrm{jk}}=1\right| \mathrm{C}_{\max }$ is equivalent to:

- a special case of the Resource-Constrained Project Scheduling Problem with equallength jobs and resource capacities equal to 1 without precedence relations;
- a special case of the School Timetabling Problem.

Scheduling problems to minimize the makespan

Lemma 3: There exists an instance of the problem $\mathrm{Hm} / / \mathrm{C}_{\text {max }}$ for which an active schedule exists with a relative error of $O(m)$.

$$
N=N_{1} \cup N_{2} \cup \ldots \cup N_{m}
$$

Jobs from N_{i} heat only machines $i, i+1, \ldots, m$
$A \in Z^{+}$
$\left|N_{i}\right|=A^{i}-A^{i-1}$
$H_{i}^{\max }=A^{m-i}$
$h_{j k}=H_{k}^{\max }, \mathrm{k} \geq i$
$C_{\text {max }}(\pi)=A^{m}-1$
$C_{\max }\left(\pi^{\prime}\right)=m\left(A^{m}-A^{m-1}\right)$

Relative error:
$m-1+\frac{m-m A^{m-1}}{A^{m}-1}$

Scheduling problems to minimize total tardiness

$T_{j}(\pi)=\max \left\{0, C_{j}(\pi)-d_{j}\right\} \quad-$ tardiness of $j o b j$ in the schedule π.
$H 1\left|\mid \Sigma T_{j}\right.$ - scheduling problem with $\mathrm{m}=1$ stack to minimize total tardiness.

Lemma 4: Problem $\mathrm{H} 1 / \mid \Sigma T_{j}$ is NP-hard.

Reduction from the NP-hard special case of problem $1 / / \Sigma T_{j}$.

Scheduling problems to minimize total tardiness

$$
\left\{\begin{array}{l}
p_{1}>p_{2}>\cdots>p_{2 n+1}, \\
d_{1}<d_{2}<\cdots<d_{2 n+1}, \\
d_{2 n+1}-d_{1}<p_{2 n+1} \\
p_{2 n+1}=M=n^{3} b, \\
p_{2 n}=p_{2 n+1}+b=a_{2 n} \\
p_{2 i}=p_{2 i+2}+b=a_{2 i}, i=n-1, \ldots, 1 \\
p_{2 i-1}=p_{2 i}+\delta_{i}=a_{2 i-1}, i=n, \ldots, 1 \\
d_{2 n+1}=\sum_{i:=1}^{n} p_{2 i}+p_{2 n+1}+\frac{1}{2} \delta, \\
d_{2 n}=d_{2 n+1}-\delta, \\
d_{2 i}=d_{2 i+2}-(n-i) b+\delta, i=n-1, \ldots, 1 \\
d_{2 i-1}=d_{2 i}-(n-i) \delta_{i}-\varepsilon \delta_{i}, i=n, \ldots, 1
\end{array}\right.
$$

we add two jobs $2 n+2$ and $2 n+3$, where

$$
\begin{array}{ll}
p_{2 n+2}=p_{2 n+1}, & d_{2 n+2}=0, \\
p_{2 n+3}=p_{1}-p_{2 n+1}<p_{2 n+1} & d_{2 n+3}=0
\end{array}
$$

where $\delta_{i} \in Z^{+}, i=1,2, \ldots, n$, are integer numbers,

$$
\delta=\sum_{i=1}^{n} \delta_{i}, \quad b=n^{2} \delta
$$

and

$$
0<\varepsilon<\frac{\min _{i} \delta_{i}}{\max _{i} \delta_{i}}
$$

Thanks for your attention

Frank Werner
Otto-von-Guericke
Universität Magdeburg
Evgeny Gafarov
Institute of Control Sciences of the
Russian Academy of Sciences

