Dr.-Ing. Lenarra Fries
Nestlé Research Center, Lausanne, Switzerland

Dr.-Ing. Michael Jacob
Glatt Ingenieurtechnik GmbH, Weimar

Prof. Dr.-Ing. habil. Stefan Palzer
Nestlé Research Center, Lausanne, Switzerland

Dr.-Ing. Mirko Peglow
IPT-PERGANDE GmbH, Weißandt-Gölzau

Dr.-Ing. Lennart Fries
IPT-PERGANDE GmbH, Weißandt-Gölzau

Dr.-Ing. Stefan Heinrich
Institute of Solids Process Engineering and Particle Technology, TUHH

Prof. Dr. Eduard Eichner
eduard.eichner@tuhh.de
Phone +49 40 42878-2811
www.tuhh.de/spe

Date and venue
TuTech Innovation GmbH
Harburger Schlossstrasse 6-12
21079 Hamburg, Germany
Phone +49 40 7629-0

Start
Monday, November 6th, 2017, 1:00 p.m.

End
Thursday, November 9th, 2017, 6:00 p.m.

Registration
www.gvt.org/hochschulkurse
www.fluidization-course.com

Course fee
Early Bird saves 150 Euro until September 5th, 2017
1600 Euro for members of GVT
1650 Euro for non-members of GVT

The course fee includes extensive course-ware (lecture and practical course materials), refreshments, coffee and dinner at the 2nd and 3rd evening.

The course fee can be transferred after the official confirmation of participation by GVT. The course fee is tax free in Germany (§ 4 (22) UStG-MWSt.). Cancellations until October 24th, 2017 are free of charge. Thereafter, no refunding is possible, however another participant can be denominated.

Accommodation
Hotel Panorama (15 min. walking distance) will guarantee room reservations until October 24th, 2017.

Single room 92 Euro
Hotel Panorama (15 min. walking distance) will guarantee room reservations until October 24th, 2017.
The course is designed for people from various backgrounds (engineers, chemists, food and pharmaceutical technologists) and with different levels of experience, who need to understand the fundamentals of applications of modern and efficient fluidized bed processes. The course language is English.

TOPIC

Fluidization technology has a tremendous economic importance and is used for a wide range of physical and chemical processes such as classification, drying, adsorption, heating and cooling of solids, combustion, pyrolysis, carbonization, gasification, calcination or gas-solid reactions.

In this course we focus on the drying as well as on the spray and is used for a wide range of physical and chemical processes like classiﬁcation, drying, adsorption, heating and cooling of solids, combustion, pyrolysis, carbonization, gasiﬁcation, calcination or gas-solid reactions.

Additional advantages of this size-enlargement process are the possibilities to improve particle properties, like appearance, taste and odor or the protection from oxygen, humidity, light or incompatible active agents as well as the adjustment of the controlled release of active components (e.g. drug).

This course highlights the fundamentals and applications of various ﬂuidized bed processes for drying, coating, granulation and agglomeration of particles with practical hints and extensive calculation examples. The focus is on ﬂuid mechanics, mixing, heat and mass transfer and particle formulation mechanisms. Furthermore, actual applications as well as modern computational tools and measuring techniques are presented. Practical process demonstrations in leading laboratories and tutorials will strengthen the acquired knowledge.

TARGET AUDIENCE

The course is designed for people from various backgrounds (engineers, chemists, food and pharmaceutical technologists) and with different levels of experience, who need to understand the fundamentals of applications of modern and efficient fluidized bed processes. The course language is English.

TOPIC

Fluidization technology has a tremendous economic importance and is used for a wide range of physical and chemical processes such as classification, drying, adsorption, heating and cooling of solids, combustion, pyrolysis, carbonization, gasification, calcination or gas-solid reactions.

In this course we focus on the drying as well as on the spray and is used for a wide range of physical and chemical processes like classiﬁcation, drying, adsorption, heating and cooling of solids, combustion, pyrolysis, carbonization, gasiﬁcation, calcination or gas-solid reactions.

Additional advantages of this size-enlargement process are the possibilities to improve particle properties, like appearance, taste and odor or the protection from oxygen, humidity, light or incompatible active agents as well as the adjustment of the controlled release of active components (e.g. drug).

This course highlights the fundamentals and applications of various ﬂuidized bed processes for drying, coating, granulation and agglomeration of particles with practical hints and extensive calculation examples. The focus is on ﬂuid mechanics, mixing, heat and mass transfer and particle formulation mechanisms. Furthermore, actual applications as well as modern computational tools and measuring techniques are presented. Practical process demonstrations in leading laboratories and tutorials will strengthen the acquired knowledge.

TARGET AUDIENCE

The course is designed for people from various backgrounds (engineers, chemists, food and pharmaceutical technologists) and with different levels of experience, who need to understand the fundamentals of applications of modern and efficient fluidized bed processes. The course language is English.

TOPIC

Fluidization technology has a tremendous economic importance and is used for a wide range of physical and chemical processes such as classification, drying, adsorption, heating and cooling of solids, combustion, pyrolysis, carbonization, gasification, calcination or gas-solid reactions.

In this course we focus on the drying as well as on the spray and is used for a wide range of physical and chemical processes like classiﬁcation, drying, adsorption, heating and cooling of solids, combustion, pyrolysis, carbonization, gasiﬁcation, calcination or gas-solid reactions.

Additional advantages of this size-enlargement process are the possibilities to improve particle properties, like appearance, taste and odor or the protection from oxygen, humidity, light or incompatible active agents as well as the adjustment of the controlled release of active components (e.g. drug).

This course highlights the fundamentals and applications of various ﬂuidized bed processes for drying, coating, granulation and agglomeration of particles with practical hints and extensive calculation examples. The focus is on ﬂuid mechanics, mixing, heat and mass transfer and particle formulation mechanisms. Furthermore, actual applications as well as modern computational tools and measuring techniques are presented. Practical process demonstrations in leading laboratories and tutorials will strengthen the acquired knowledge.