Discrete Gaussians, theta functions and abelian varieties

Veranstalter: Institut für Algebra und Geometrie

Dienstag, 11.12.2018, 13:00-14:00

Im Rahmen unseres Oberseminares trägt vor Herr Dr. Daniele Agostini (HU Berlin).

Der Vortrag findet statt im Raum G02-20.

Alle Interessierten sind herzlich eingeladen.

Abstract: The Gaussian distribution is a central object in mathematics and it can be characterised as the unique probability on the real numbers that maximises entropy, for fixed mean and variance. It turns out that the same property can be used to define a discrete Gaussian distribution on the integers. Moreover, the discrete Gaussian is parametrised naturally by the Riemann theta function, and, as such, it has a natural connection to the geometric theory of complex tori, or, more precisely, abelian varieties. The aim of the talk is to present this connection and to show how question in probability give rise to natural problems in geometry and viceversa. This is joint work with Carlos Amendola (TU Munich).

Kontakt: Prof. Dr. Thomas Kahle

weitere Veranstaltungen anzeigen

Letzte Änderung: 13.03.2017 - Ansprechpartner: M.Sc. Eric Göltzer