Veranstaltungskalender

Classification of empty lattice 4-simplices of width larger than two



Veranstalter: Institut für Algebra und Geometrie

Dienstag, 30.05.2017, 14:00-15:00

Im Rahmen unseres Oberseminares spricht Herr Oscar Iglesias Valino (Universität Cantabria).

Der Vortrag findet statt im Gebäude 03, Raum 214.

Alle Interessierten sind herzlich eingeladen.

Abstract: A lattice d-simplex is the convex hull of d + 1 affinely independent integer points in Rd. It is called empty if it contains no lattice point apart of its d + 1 vertices. The classification of empty 3-simplices is known since 1964 (White), based on the fact that they all have width one. But for dimension 4 no complete classification is known.

Haase and Ziegler (2000) computed all empty 4-simplices up to determinant 1000 and based on their results conjectured that after determinant 179 all empty 4-simplices have width one or two. We prove this conjecture as follows:

- We show that no empty 4-simplex of width three or more can have determinant greater than 7000, by combining the recent classification of hollow 3-polytopes (Averkov, Krümpelmann and Weltge, to appear) with general methods from the geometry of numbers.

- We continue the computations of Haase and Ziegler up to determinant 7600, and find that no new 4-simplices of width larger than two arise.

In particular, we give the whole list of empty 4-simplices of width larger than two, which is as computed by Haase and Ziegler: There is a single empty 4-simplex of width four (of determinant 101), and 178 empty 4-simplices of width three, with determinants ranging from 41 to 179.



Kontakt: Prof. Dr. Benjamin Nill

weitere Veranstaltungen anzeigen

Letzte Änderung: 13.03.2017 - Ansprechpartner:

Sie können eine Nachricht versenden an: Prof. Dr. Benjamin Nill
Sicherheitsabfrage:
Captcha
 
Lösung: